Zobrazeno 1 - 1
of 1
pro vyhledávání: '"Ami George"'
Autor:
Ugur Halici, Rishab Gargeya, Quincy Wong, Hady Ahmady Phoulady, David Tellez, Bram van Ginneken, Andrew H. Beck, Nico Karssemeijer, Jeroen van der Laak, Nassir Navab, Jonas Annuscheit, Leena Latonen, Kaisa Liimatainen, Talha Qaiser, Dayong Wang, Quirine F. Manson, Aoxiao Zhong, Shigeto Seno, Yee-Wah Tsang, Rui Venâncio, Ismael Serrano, Daniel Racoceanu, N. Stathonikos, Muhammad Shaban, Stefanie Demirci, M. Milagro Fernández-Carrobles, Babak Ehteshami Bejnordi, Matt Berseth, Mustafa Umit Oner, Geert Litjens, Kimmo Kartasalo, Hideo Matsuda, Maschenka Balkenhol, Huangjing Lin, Elia Bruni, Hao Chen, Seiryo Watanabe, A. Kalinovsky, Marcory C. R. F. van Dijk, Ami George, Nasir M. Rajpoot, Francisco Beca, Quanzheng Li, Meyke Hermsen, Mira Valkonen, Oscar Deniz, Alexei Vylegzhanin, Vitali Liauchuk, Ruqayya Awan, Mitko Veta, Korsuk Sirinukunwattana, Gloria Bueno, Peter Hufnagl, Christian Haß, Vassili Kovalev, Vitali Khvatkov, Rengul Cetin-Atalay, Humayun Irshad, Oren Kraus, Qi Dou, Pekka Ruusuvuori, Aditya Khosla, Bharti Mungal, Pheng-Ann Heng, Oscar Geessink, Paul J. van Diest, Shadi Albarqouni, Peter Bult, Yoichi Takenaka
Publikováno v:
JAMA Cardiology
JAMA Cardiology, American Medical Association 2017, 318, ⟨10.1001/jama.2017.14585⟩
Jama : Journal of the American Medical Association, 318, 2199-2210
JAMA Neurology, 318(22), 2199-2210. American Medical Association (AMA)
Jama : Journal of the American Medical Association, 318, 22, pp. 2199-2210
JAMA-The Journal of The American Medical Association, 318(22), 2199. American Medical Association
JAMA Cardiology, American Medical Association 2017, 318, ⟨10.1001/jama.2017.14585⟩
Jama : Journal of the American Medical Association, 318, 2199-2210
JAMA Neurology, 318(22), 2199-2210. American Medical Association (AMA)
Jama : Journal of the American Medical Association, 318, 22, pp. 2199-2210
JAMA-The Journal of The American Medical Association, 318(22), 2199. American Medical Association
IMPORTANCE: Application of deep learning algorithms to whole-slide pathology imagescan potentially improve diagnostic accuracy and efficiency. OBJECTIVE: Assess the performance of automated deep learning algorithms at detecting metastases in hematoxy
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c5e2e1ebc60e746d57a0deffa5ee651b
https://hal.archives-ouvertes.fr/hal-03140979/document
https://hal.archives-ouvertes.fr/hal-03140979/document