Zobrazeno 1 - 10
of 16
pro vyhledávání: '"Amelie Echle"'
Autor:
Elizabeth Alwers, Jakob N Kather, Matthias Kloor, Alexander Brobeil, Katrin E Tagscherer, Wilfried Roth, Amelie Echle, Efrat L Amitay, Jenny Chang‐Claude, Hermann Brenner, Michael Hoffmeister
Publikováno v:
The Journal of Pathology: Clinical Research, Vol 9, Iss 2, Pp 129-136 (2023)
Abstract In addition to the traditional staging system in colorectal cancer (CRC), the Immunoscore® has been proposed to characterize the level of immune infiltration in tumor tissue and as a potential prognostic marker. The aim of this study was to
Externí odkaz:
https://doaj.org/article/4c9e90af24084aecaf17e369708cd7af
Autor:
Chiara Maria Lavinia Loeffler, Nadine T. Gaisa, Hannah Sophie Muti, Marko van Treeck, Amelie Echle, Narmin Ghaffari Laleh, Christian Trautwein, Lara R. Heij, Heike I. Grabsch, Nadina Ortiz Bruechle, Jakob Nikolas Kather
Publikováno v:
Frontiers in Genetics, Vol 12 (2022)
In the last four years, advances in Deep Learning technology have enabled the inference of selected mutational alterations directly from routine histopathology slides. In particular, recent studies have shown that genetic changes in clinically releva
Externí odkaz:
https://doaj.org/article/4906266d913945f587bd672a29af4664
Autor:
Elizabeth Alwers, Jakob N Kather, Matthias Kloor, Alexander Brobeil, Katrin E Tagscherer, Wilfried Roth, Amelie Echle, Efrat L Amitay, Jenny Chang‐Claude, Hermann Brenner, Michael Hoffmeister
Publikováno v:
The journal of pathology: clinical research 9(2), 129-136 (2023). doi:10.1002/cjp2.304
The journal of pathology: clinical research 9(2), 129-136 (2023). doi:10.1002/cjp2.304
Published by Wiley, Chichester
Published by Wiley, Chichester
Autor:
Jakob Nikolas Kather, Marie Louise Malmstrøm, Tine Plato Kuhlmann, Nicholas P. West, I. Gögenur, Heike I. Grabsch, Narmin Ghaffari Laleh, Katarina Levic, Lara R. Heij, Susanne Eiholm, Oliver Lester Saldanha, Aurora Bono, Amelie Echle, Katerina Kouvidi, Titus J. Brinker, Philip Quirke, Scarlet Brockmoeller
Publikováno v:
Journal of Pathology, 256(3), 269-281. Wiley
Brockmoeller, S, Echle, A, Ghaffari Laleh, N, Eiholm, S, Malmstrøm, M L, Plato Kuhlmann, T, Levic, K, Grabsch, H I, West, N P, Saldanha, O L, Kouvidi, K, Bono, A, Heij, L R, Brinker, T J, Gögenür, I, Quirke, P & Kather, J N 2022, ' Deep learning identifies inflamed fat as a risk factor for lymph node metastasis in early colorectal cancer ', Journal of Pathology, vol. 256, no. 3, pp. 269-281 . https://doi.org/10.1002/path.5831
Brockmoeller, S, Echle, A, Ghaffari Laleh, N, Eiholm, S, Malmstrøm, M L, Plato Kuhlmann, T, Levic, K, Grabsch, H I, West, N P, Saldanha, O L, Kouvidi, K, Bono, A, Heij, L R, Brinker, T J, Gögenür, I, Quirke, P & Kather, J N 2022, ' Deep learning identifies inflamed fat as a risk factor for lymph node metastasis in early colorectal cancer ', Journal of Pathology, vol. 256, no. 3, pp. 269-281 . https://doi.org/10.1002/path.5831
The spread of early-stage (T1 and T2) adenocarcinomas to locoregional lymph nodes is a key event in disease progression of colorectal cancer (CRC). The cellular mechanisms behind this event are not completely understood and existing predictive biomar
Autor:
Narmin Ghaffari Laleh, Hannah Sophie Muti, Chiara Maria Lavinia Loeffler, Amelie Echle, Oliver Lester Saldanha, Faisal Mahmood, Ming Y. Lu, Christian Trautwein, Rupert Langer, Bastian Dislich, Roman D. Buelow, Heike Irmgard Grabsch, Hermann Brenner, Jenny Chang-Claude, Elizabeth Alwers, Titus J. Brinker, Firas Khader, Daniel Truhn, Nadine T. Gaisa, Peter Boor, Michael Hoffmeister, Volkmar Schulz, Jakob Nikolas Kather
Publikováno v:
Medical Image Analysis. 82
The publisher regrets that figures were misplaced after the proofing stage. Figure 4 and 5 are duplicates of other figures. The figure legends are not affected. Figure 4 and Figure 5 were corrected in the online version of the article. The publisher
Autor:
Narmin Ghaffari Laleh, Hannah Sophie Muti, Chiara Maria Lavinia Loeffler, Amelie Echle, Oliver Lester Saldanha, Faisal Mahmood, Ming Y. Lu, Christian Trautwein, Rupert Langer, Bastian Dislich, Roman D. Buelow, Heike Irmgard Grabsch, Hermann Brenner, Jenny Chang-Claude, Elizabeth Alwers, Titus J. Brinker, Firas Khader, Daniel Truhn, Nadine T. Gaisa, Peter Boor, Michael Hoffmeister, Volkmar Schulz, Jakob Nikolas Kather
Publikováno v:
Ghaffari Laleh, Narmin; Muti, Hannah Sophie; Loeffler, Chiara Maria Lavinia; Echle, Amelie; Saldanha, Oliver Lester; Mahmood, Faisal; Lu, Ming Y; Trautwein, Christian; Langer, Rupert; Dislich, Bastian; Buelow, Roman D; Grabsch, Heike Irmgard; Brenner, Hermann; Chang-Claude, Jenny; Alwers, Elizabeth; Brinker, Titus J; Khader, Firas; Truhn, Daniel; Gaisa, Nadine T; Boor, Peter; ... (2022). Benchmarking weakly-supervised deep learning pipelines for whole slide classification in computational pathology. Medical image analysis, 79, p. 102474. Elsevier 10.1016/j.media.2022.102474
Medical Image Analysis, 79:102474. Elsevier
Medical Image Analysis, 79:102474. Elsevier
Artificial intelligence (AI) can extract visual information from histopathological slides and yield biological insight and clinical biomarkers. Whole slide images are cut into thousands of tiles and classification problems are often weakly-supervised
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1c8439fc63c967f910426d4cd5ca2075
https://boris.unibe.ch/170129/1/1-s2.0-S1361841522001219-main.pdf
https://boris.unibe.ch/170129/1/1-s2.0-S1361841522001219-main.pdf
Autor:
Tom Luedde, Alexander T. Pearson, N Rindtorff, Jakob Nikolas Kather, Titus J. Brinker, Amelie Echle
Publikováno v:
British Journal of Cancer
British journal of cancer : BJC 124(4), 686-696 (2021). doi:10.1038/s41416-020-01122-x
British journal of cancer : BJC 124(4), 686-696 (2021). doi:10.1038/s41416-020-01122-x
British journal of cancer 124(4), 686-696 (2021). doi:10.1038/s41416-020-01122-x
Published by Nature Publ. Group, Edinburgh
Published by Nature Publ. Group, Edinburgh
Publikováno v:
Histopathology : journal of the British Division of the International Academy of Pathology 80(7), 1121-1127 (2022). doi:10.1111/his.14659
Histopathology : journal of the British Division of the International Academy of Pathology 80(7), 1121-1127 (2022). doi:10.1111/his.14659
Published by Wiley-Blackwell, Oxford [u.a.]
Published by Wiley-Blackwell, Oxford [u.a.]
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::62553a450259fce7580bab8915ca3e50
Autor:
Peter Leonard Schrammen, Amelie Echle, Philip Quirke, Lara R. Heij, Nicholas P. West, Jakob Nikolas Kather, Christian Trautwein, Jenny Chang-Claude, Narmin Ghaffari Laleh, Alexander Brobeil, Daniel Truhn, Heike I. Grabsch, Volkmar Schulz, Titus J. Brinker, Matthias Kloor, Elizabeth Alwers, Hermann Brenner, Michael Hoffmeister, Dirk Jäger
Publikováno v:
Journal of Pathology, 256(1), 50-60. Wiley
The journal of pathology 256(1), 50-60 (2022). doi:10.1002/path.5800
The journal of pathology 256(1), 50-60 (2022). doi:10.1002/path.5800
The journal of pathology 256(1), 50-60 (2022). doi:10.1002/path.5800
Published by Wiley, Bognor Regis [u.a.]
Published by Wiley, Bognor Regis [u.a.]
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c9f204126dab46f39b95b92a10cb62df
https://cris.maastrichtuniversity.nl/en/publications/e8d31f49-73c6-4c20-b1b9-2f07f7400f29
https://cris.maastrichtuniversity.nl/en/publications/e8d31f49-73c6-4c20-b1b9-2f07f7400f29
Autor:
Marko van Treeck, Didem Cifci, Narmin Ghaffari Laleh, Oliver Lester Saldanha, Chiara M. L. Loeffler, Katherine J. Hewitt, Hannah Sophie Muti, Amelie Echle, Tobias Seibel, Tobias Paul Seraphin, Christian Trautwein, Sebastian Foersch, Tom Luedde, Daniel Truhn, Jakob Nikolas Kather
The interpretation of digitized histopathology images has been transformed thanks to artificial intelligence (AI). End-to-end AI algorithms can infer high-level features directly from raw image data, extending the capabilities of human experts. In pa
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f8bb9bdb7182bae44396a284e3cea142
https://doi.org/10.1101/2021.12.19.473344
https://doi.org/10.1101/2021.12.19.473344