Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Amelia J. Solon"'
Autor:
Amelia J. Solon, Vernon J. Lawhern, Jonathan Touryan, Jonathan R. McDaniel, Anthony J. Ries, Stephen M. Gordon
Publikováno v:
Frontiers in Human Neuroscience, Vol 13 (2019)
Deep convolutional neural networks (CNN) have previously been shown to be useful tools for signal decoding and analysis in a variety of complex domains, such as image processing and speech recognition. By learning from large amounts of data, the repr
Externí odkaz:
https://doaj.org/article/f53c7537aa30450dadbc4df864a0a38a
Publikováno v:
EMBC
P300-based brain-computer interfaces (BCIs) are often trained per-user and per-application space. Training such models requires ground truth knowledge of target and non-target stimulus categories during model training, which imparts bias into the mod
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5be5b2356a98707a7a43adf263130e39
http://arxiv.org/abs/1807.04334
http://arxiv.org/abs/1807.04334
Publikováno v:
SMC
Humans can fluidly adapt their interest in complex environments in ways that machines cannot. Here, we lay the groundwork for a real-world system that passively monitors and merges neural correlates of visual interest across team members via Collabor
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3e0c97c56a648f1a584056e0bd2982ed
Autor:
Anthony J. Ries, Jonathan R. McDaniel, Stephen V. Gordon, Jonathan Touryan, Vernon J. Lawhern, Amelia J. Solon
Publikováno v:
Frontiers in Human Neuroscience. 12
Autor:
Amar R. Marathe, Stephen M. Gordon, Jonathan R. McDaniel, Vernon J. Lawhern, Amelia J. Solon, Jason S. Metcalfe
Publikováno v:
Frontiers in Human Neuroscience. 12
Autor:
Vernon J. Lawhern, Stephen M. Gordon, Chou P. Hung, Brent J. Lance, Amelia J. Solon, Nicholas R. Waytowich
Publikováno v:
Journal of Neural Engineering. 15:056013
Brain computer interfaces (BCI) enable direct communication with a computer, using neural activity as the control signal. This neural signal is generally chosen from a variety of well-studied electroencephalogram (EEG) signals. For a given BCI paradi