Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Amel Boulfoul"'
Autor:
Nabil Rezaiki, Amel Boulfoul
Publikováno v:
Journal of Innovative Applied Mathematics and Computational Sciences, Vol 4, Iss 1 (2024)
In this paper, we study the existence of periodic solutions for the following piecewise third-order differential equation: $$ \dddot{x}+\dot{x}-\varepsilon\sum\limits_{i=1}^{2}c_i|x|^i=0, $$ with $\varepsilon$ a real parameter sufficiently small, $c_
Externí odkaz:
https://doaj.org/article/05d37eb20596473b85ee43b55a7c7979
Autor:
Abdallah Brik, Amel Boulfoul
Publikováno v:
Boletim da Sociedade Paranaense de Matemática, Vol 42 (2024)
In this paper, we study the limit cycles of a perturbed differential in $\mathbb{R} ^2$, given by \begin{equation*} \left\{ \begin{array}{ccl} \overset{.}{x} &=& y ,\\ \overset{.}{y} &=& -x-\epsilon (1+\sin^n (\theta) \cos^m (\theta))H(x,y), \
Externí odkaz:
https://doaj.org/article/37419d6ba70f452cbda8754e0cebf4fc
Autor:
Nawal Mellahi, Amel Boulfoul
Publikováno v:
Moroccan Journal of Pure and Applied Analysis. 6:1-15
We apply the averaging theory of first and second order for studying the limit cycles of generalized polynomial Linard systems of the form x ˙ = y - 1 ( x ) y , y ˙ = - x - f ( x ) - g ( x ) y - h ( x ) y 2 , \dot x = y - 1\left( x \right)y,\,\,\do
Publikováno v:
Journal of Applied Analysis & Computation. 9:864-883
In this paper, we consider the limit cycles of a class of polynomial differential systems of the form $\dot{x}=-y, \hspace{0.2cm} \dot{y}=x-f(x)-g(x)y-h(x)y^{2}-l(x)y^{3}, $ where $f(x)=\epsilon f_{1}(x)+\epsilon^{2}f_{2}(x), $ $g(x)=\epsilon g_{1}(x
Publikováno v:
Differential Equations and Dynamical Systems. 27:493-514
We study the maximum number of limit cycles of the polynomial differential systems of the form $$\begin{aligned} \dot{x}=-y+l(x), \,\dot{y}=x-f(x)-g(x)y-h(x)y^{2}-d_{0}y^{3}, \end{aligned}$$ where \(l(x)=\varepsilon l^{1}(x)+\varepsilon ^{2}l^{2}(x),