Zobrazeno 1 - 10
of 24
pro vyhledávání: '"Ambrosi, Emiliano"'
Autor:
Ambrosi, Emiliano, Valloni, Domenico
Let $k$ be an algebraically closed field of characteristic $p \geq 0$ and $V$ be a faithful $k$-rational representation of a finite $\ell$-group $G$, where $\ell$ is a prime number. The Noether problem asks whether $V/G$ is a stably rational variety.
Externí odkaz:
http://arxiv.org/abs/2302.04153
Autor:
Ambrosi, Emiliano, Manzaroli, Matilde
Let $X\rightarrow C$ be a totally real semistable degeneration over a smooth real curve $C$ with degenerate fiber $X_0$. Assuming that the irreducible components of $X_0$ are simple from a cohomological point of view, we give a bound for the individu
Externí odkaz:
http://arxiv.org/abs/2211.12134
Autor:
Ambrosi, Emiliano
Cette thèse est divisée en huit chapitres. D’abord, dans le Chapitre 1, on présente des résultats et des outils déjà connus qu’on utilisera dans la suite de la thèse. Le Chapitre 2 est consacré à résumer de maniére uniforme les nouveau
Externí odkaz:
http://www.theses.fr/2019SACLX019/document
Autor:
Ambrosi, Emiliano
Publikováno v:
Compositio Mathematica , Volume 159 , Issue 11 , November 2023 , pp. 2261 - 2278
Let $k$ be an algebraic extension of $\mathbb F_p$ and $K/k$ a regular extension of fields (e.g. $\mathbb F_p(T)/\mathbb F_p$). Let $A$ be a $K$-abelian variety such that all the isogeny factors are neither isotrivial nor of $p$-rank zero. We give a
Externí odkaz:
http://arxiv.org/abs/2103.16568
Autor:
Ambrosi, Emiliano
Publikováno v:
Mathematical Research Letters, Vol. 28, No. 2, pp. 315-329, 2021
Let $k$ be a finitely generated field of characteristic $p>0$ and $X$ a smooth and proper scheme over $k$. Recent works of Cadoret, Hui and Tamagawa show that, if $X$ satisfies the $\ell$-adic Tate conjecture for divisors for every prime $\ell\neq p$
Externí odkaz:
http://arxiv.org/abs/1903.01929
Autor:
Ambrosi, Emiliano, D'Addezio, Marco
Publikováno v:
Algebraic Geometry, Vol. 9, No. 2, pp. 633-650, 2022
Let $X_0$ be a smooth geometrically connected variety defined over a finite field $\mathbb F_q$ and let $\mathcal E_0^{\dagger}$ be an irreducible overconvergent $F$-isocrystal on $X_0$. We show that if a subobject of minimal slope of the associated
Externí odkaz:
http://arxiv.org/abs/1811.08423
Autor:
Ambrosi, Emiliano
Let $k$ be an infinite finitely generated field of characteristic $p>0$. Fix a separated scheme $X$ smooth, geometrically connected, and of finite type over $k$ and a smooth proper morphism $f:Y\rightarrow X$. The main result of this paper is that th
Externí odkaz:
http://arxiv.org/abs/1810.06481
Autor:
Ambrosi, Emiliano
Publikováno v:
Pure and Applied Mathematics Quarterly, Vol. 14, No. 3-4 (2018), pp. 515-527
We show that the $\ell$-adic Tate conjecture for divisors on smooth proper varieties over finitely generated fields of positive characteristic follows from the $\ell$-adic Tate conjecture for divisors on smooth projective surfaces over finite fields.
Externí odkaz:
http://arxiv.org/abs/1810.06480
Autor:
Ambrosi, Emiliano
Let $k$ be a finitely generated field of characteristic $p > 0$ and $\ell$ a prime. Let $X$ be a smooth, separated, geometrically connected curve of finite type over $k$ and $\rho: \pi_1(X)\rightarrow GL_r(\mathbb Z_{\ell})$ a continuous representati
Externí odkaz:
http://arxiv.org/abs/1711.06132
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.