Zobrazeno 1 - 10
of 478
pro vyhledávání: '"Amaya E"'
Autor:
Morales-Amaya, E.
Let $K\subset \mathbb{R}^n$ be a convex body, $n\geq 3$. We say that $K$ satisfies the \textit{Barker-Larman condition} if there exists a ball $B\subset \text{int} K$ such that for every suppor\-ting hyperplane $\Pi$ of $B$, the section $\Pi \cap K$
Externí odkaz:
http://arxiv.org/abs/2307.07624
Publikováno v:
In Actas Urológicas Españolas (English Edition) November 2024 48(9):658-664
Publikováno v:
In Actas Urologicas Espanolas November 2024 48(9):658-664
In this work we prove the following result: Let $K$ be a strictly convex body in the Euclidean space $\mathbb{R}^n, n\geq 3$, and let $L$ be a hypersurface, which is the image of an embedding of the sphere $\mathbb{S}^{n-1}$, such that $K$ is contain
Externí odkaz:
http://arxiv.org/abs/2108.01732
One of the most important problems in Geometric Tomography is to establish properties of a given convex body if we know some properties over its sections or its projections. There are many interesting and deep results that provide characterizations o
Externí odkaz:
http://arxiv.org/abs/2107.14755
Characterizations of the sphere by means of visual cones: an alternative proof of Matsuura's theorem
In this work we prove the following: let $K$ be a convex body in the Euclidean space $\mathbb{R}^n$, $n\geq 3$, contained in the interior of the unit ball of $\mathbb{R}^n$, and let $p\in \mathbb{R}^n$ be a point such that, from each point of $\mathb
Externí odkaz:
http://arxiv.org/abs/2007.04516
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Australian Journal of Clinical Education
Authentic conflict scenarios are an essential basis for learning activities and assessment tasks in the conflict management and resolution field. Authentic scenarios allow students to apply theories and skills to realistic situations, enhancing their
Externí odkaz:
https://doaj.org/article/bd555457a79b4138bec6f40082ccb2bb
Publikováno v:
Advances in Geometry; Apr2024, Vol. 24 Issue 2, p247-262, 16p
Autor:
Amaya, E., Reyes, D., Paniagua, M., Calderón, S., Rashid, M.-U., Colque, P., Kühn, I., Möllby, R., Weintraub, A., Nord, C.E.
Publikováno v:
In Clinical Microbiology and Infection September 2012 18(9):E347-E354