Zobrazeno 1 - 10
of 22
pro vyhledávání: '"Amar OUAOUA"'
Publikováno v:
Mathematica Bohemica, Vol 147, Iss 4, Pp 471-484 (2022)
We consider a class of Kirchhoff type reaction-diffusion equations with variable exponents and source terms \begin{equation*} u_t-M\biggl(\int_\Omega\vert\nabla u \vert^2 {\rm d}x\bigg) \Delta u+ \vert u \vert^{m(x) -2}u_t= \vert u \vert^{r(x) -2}u.
Externí odkaz:
https://doaj.org/article/79aa591bc21f426abcb2d8e3850cd596
Autor:
Amar OUAOUA, Wissem BOUGHAMSA
Publikováno v:
Journal of Innovative Applied Mathematics and Computational Sciences, Vol 2, Iss 1 (2022)
This work is concerned with coupled semi-linear pseudo-parabolic equations with memory terms in both equations, associated with the homogeneous Dirichlet boundary condition. We show that the solution grows exponentially under specific conditions rega
Externí odkaz:
https://doaj.org/article/03e446e7c7b54ee6a8dbb014c8b6c28f
Publikováno v:
Boletim da Sociedade Paranaense de Matemática, Vol 40 (2022)
In this paper, we consider the following p-Kirchhoff type hyperboc equation with variable exponents Equation We prove that a global existence of the solution with positive initial energy, the stability based of Komorniks inequality.
Externí odkaz:
https://doaj.org/article/1819feba0855496b88e44d909483b1af
Autor:
Amar Ouaoua, Messaoud Maouni
Publikováno v:
International Journal of Analysis and Applications, Vol 17, Iss 4, Pp 620-629 (2019)
In this paper, we consider the following equation $u_{t}-\func{div}\left( \left\vert \nabla u\right\vert ^{p\left( x\right)-2}\nabla u\right) +\omega \left\vert u\right\vert ^{m\left( x\right)-2}u_{t}=b\left\vert u\right\vert ^{r\left( x\right) -2}u.
Externí odkaz:
https://doaj.org/article/855296c92bd0484a92355258bf960711
Publikováno v:
Turkish Journal of Mathematics. 47:1039-1050
Publikováno v:
International Journal of Analysis and Applications, Vol 20, Pp 10-10 (2022)
In this paper, we study the weak existence of solution for a non-linear hyperbolic coupled system of Klein-Gordon equations with memory and source terms using the Faedo-Galerkin method techniques and compactness results, we have demonstrated the uniq
Externí odkaz:
https://doaj.org/article/e3ff835decef4edf90b23991307de9dd
Autor:
Amar Ouaoua, Messouad Maouni
Publikováno v:
Boletim da Sociedade Paranaense de Matemática. 40:1-9
In this paper we will prove that the positive initial-energy solution for coupled nonlinear Klein-Gordon equations with degenerate damping and source terms grows exponentially.
Publikováno v:
Mediterranean Journal of Mathematics. 20
Publikováno v:
Mathematica Bohemica. 147:471-484
Publikováno v:
Theoretical and Applied Mechanics, Vol 48, Iss 1, Pp 53-66 (2021)
In this paper, we consider a nonlinear Timoshenko equation. First, we prove the local existence solution by the Faedo?Galerkin method, and, under suitable assumptions with positive initial energy, we prove that the local existence is global in time.