Zobrazeno 1 - 10
of 48
pro vyhledávání: '"Amar Makhlouf"'
Limit cycle bifurcation from a zero-Hopf equilibrium for a class of 3-dimensional Kolmogorov systems
Publikováno v:
Partial Differential Equations in Applied Mathematics, Vol 11, Iss , Pp 100810- (2024)
A zero-Hopf equilibrium point p of a 3-dimensional autonomous differential system in R3 is an equilibrium point such that the eigenvalues of the linear part of the system at p are 0 and ±ωi with ω≠0. A zero-Hopf bifurcation takes place when from
Externí odkaz:
https://doaj.org/article/cc8c0b70ffe2446bbe885f1712ca16ed
Autor:
Amor Menaceur, Salah Mahmoud Boulaaras, Amar Makhlouf, Karthikeyan Rajagobal, Mohamed Abdalla
Publikováno v:
Complexity, Vol 2021 (2021)
By means of the averaging method of the first order, we introduce the maximum number of limit cycles which can be bifurcated from the periodic orbits of a Hamiltonian system. Besides, the perturbation has been used for a particular class of the polyn
Externí odkaz:
https://doaj.org/article/be73ac993d064b049bdee9781ee451ad
Autor:
Sabrina Badi, Amar Makhlouf
Publikováno v:
Electronic Journal of Differential Equations, Vol 2013, Iss 168,, Pp 1-11 (2013)
Applying the averaging theory of first and second order to a class of generalized polynomial Lienard differential equations, we improve the known lower bounds for the maximum number of limit cycles that this class can exhibit.
Externí odkaz:
https://doaj.org/article/10c4dd7a453f4ccc9b19c56119005b22
Autor:
Zouhair Diab, Amar Makhlouf
Publikováno v:
Journal of Applied Mathematics, Vol 2016 (2016)
We perturb the differential system x˙1=-x2(1+x1), x˙2=x1(1+x1), and x˙k=0 for k=3,…,d inside the class of all polynomial differential systems of degree n in Rd, and we prove that at most nd-1 limit cycles can be obtained for the perturbed system
Externí odkaz:
https://doaj.org/article/4f5b0fdfc9874c0cbe2f9171e6cab3bf
Autor:
Sabrina Badi, Amar Makhlouf
Publikováno v:
Electronic Journal of Differential Equations, Vol 2012, Iss 68,, Pp 1-11 (2012)
We apply the averaging theory of first and second order to a generalized Lienard differential equation. Our main result shows that for any $n,m geq 1$ there are differential equations $ddot{x}+f(x,dot{x})dot{x}+ g(x)=0$, with f and g polynomials of d
Externí odkaz:
https://doaj.org/article/7d6df41a975d4e6d81c0bda8bb2c90c0
Autor:
Jaume Llibre, Amar Makhlouf
Publikováno v:
Electronic Journal of Differential Equations, Vol 2012, Iss 22,, Pp 1-17 (2012)
We provide sufficient conditions for the existence of periodic solutions of the fourth-order differential equation $$ ddddot x -(lambda+mu) dddot x +(1+lambda mu)ddot x -(lambda+mu)dot x+lambda mu x = varepsilon F(x, dot x, ddot x, dddot x), $$ where
Externí odkaz:
https://doaj.org/article/d3f8194e50574c81a7f39f9d96d0f935
Autor:
Amar Makhlouf, Lilia Bousbiat
Publikováno v:
International Journal of Differential Equations, Vol 2015 (2015)
We provide sufficient conditions for the existence of periodic solutions of the polynomial third order differential system x.=-y+εP(x,y,z)+h1(t), y.=x+εQ(x,y,z)+h2(t), and z.=az+εR(x,y,z)+h3(t), where P, Q, and R are polynomials in the variables x
Externí odkaz:
https://doaj.org/article/7463031eb11140618bc28747f47837b8
Autor:
Amar Makhlouf, Amor Menaceur
Publikováno v:
International Journal of Differential Equations, Vol 2015 (2015)
We apply the averaging theory of first and second order to a class of generalized Kukles polynomial differential systems to study the maximum number of limit cycles of these systems.
Externí odkaz:
https://doaj.org/article/6a01be1a0fa741d98d6c2ec1a6658527
Autor:
Amar, Makhlouf, Djamel, Debbabi
Publikováno v:
In Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena January 2017 94:112-118
Autor:
Houdeifa Melki, Amar Makhlouf
Publikováno v:
Journal of Applied Analysis. 29:59-75
We apply the averaging theory of first and second order to a class of generalized polynomial Kukles differential systems, which can bifurcate from the periodic orbits of the linear center x ˙ = y {\dot{x}=y} , y ˙ = - x {\dot{y}=-x} , in order to s