Zobrazeno 1 - 10
of 799
pro vyhledávání: '"Alves Claudianor"'
Autor:
Alves Claudianor O.
Publikováno v:
Advanced Nonlinear Studies, Vol 19, Iss 1, Pp 133-147 (2019)
This paper is concerned with the existence of a heteroclinic solution for the following class of elliptic equations:
Externí odkaz:
https://doaj.org/article/8c402f9d855048629356f218bd31278a
In this paper, we prove the existence, uniqueness and qualitative properties of heteroclinic solution for a class of autonomous quasilinear ordinary differential equations of the Allen-Cahn type given by $$ -\left(\phi(|u'|)u'\right)'+V'(u)=0~~\text{
Externí odkaz:
http://arxiv.org/abs/2404.11693
The purpose of this paper consists in using variational methods to establish the existence of heteroclinic solutions for some classes of prescribed mean curvature equations of the type $$ -div\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right) + A(\e
Externí odkaz:
http://arxiv.org/abs/2404.11689
Publikováno v:
Advances in Nonlinear Analysis, Vol 9, Iss 1, Pp 108-123 (2018)
We prove the existence of at least one ground state solution for the semilinear elliptic problem
Externí odkaz:
https://doaj.org/article/1fde6b7332f04270b3c477f6bad1d3f9
Publikováno v:
Advances in Nonlinear Analysis, Vol 8, Iss 1, Pp 928-945 (2017)
In the present paper, we study the existence of solutions for some classes of singular systems involving the Δp(x){\Delta_{p(x)}} and Δq(x){\Delta_{q(x)}} Laplacian operators. The approach is based on bifurcation theory and the sub-supersolut
Externí odkaz:
https://doaj.org/article/a76e9a4f820b42d2a25dba33df183464
Publikováno v:
Advances in Nonlinear Analysis, Vol 5, Iss 4, Pp 331-345 (2016)
We study the following nonlinear Choquard equation:
Externí odkaz:
https://doaj.org/article/62774c1d89db415b97b01c1730a1288d
Publikováno v:
Advances in Nonlinear Analysis, Vol 5, Iss 1, Pp 1-26 (2016)
In this paper, we study the existence of solutions for the Kirchhoff problem M(∫ℝ3|∇u|2dx+∫ℝ3(λa(x)+1)u2dx)(-Δu+(λa(x)+1)u)=f(u)$M\Biggl (\int _{\mathbb {R}^{3}}|\nabla u|^{2}\, dx + \int _{\mathbb {R}^{3}} (\lambda a(x)+1)u^{2}\, dx\Big
Externí odkaz:
https://doaj.org/article/adcbe2bc2a694fc984c12ac5335fc54e
In this paper we will prove the existence of a positive solution for a class of Schr\"odinger logarithmic equation of the form \begin{equation} \left\{\begin{aligned} -\Delta u &+ u =Q(x)u\log u^2,\;\;\mbox{in}\;\;\Omega,\nonumber &\mathcal{B}u=0 \,\
Externí odkaz:
http://arxiv.org/abs/2309.01003
This paper concerns the existence of multiple solutions for a Schr\"odinger logarithmic equation of the form \begin{equation} \left\{\begin{aligned} -\varepsilon^2\Delta u + V(x)u & =u\log u^2,\;\;\mbox{in}\;\;\mathbb{R}^{N},\nonumber u \in H^{1}(\ma
Externí odkaz:
http://arxiv.org/abs/2308.12225
Autor:
Alves, Claudianor O., Ji, Chao
In this paper our objective is to investigate the existence of multiple normalized solutions to the logarithmic Schr\"{o}dinger equation given by \begin{align*} \left\{ \begin{aligned} &-\epsilon^2 \Delta u+V( x)u=\lambda u+u \log u^2, \quad \quad \h
Externí odkaz:
http://arxiv.org/abs/2307.01127