Zobrazeno 1 - 10
of 72
pro vyhledávání: '"Alves, T. F. A."'
Autor:
Pereira, F. B., Ferreira, R. S., Alencar, D. S. M., Alves, T. F. A., Alves, G. A., Lima, F. W. S., Macedo-Filho, A.
We revisit two evolutionary game theory models, namely the Prisoner and the Snowdrift dilemmas, on top of small-world networks. These dynamics on networked populations (individuals occupying nodes of a graph) are mainly concerning on the competition
Externí odkaz:
http://arxiv.org/abs/2407.08938
Autor:
Carvalho, V. R., Alves, T. F. A., Alves, G. A., Alencar, D. S. M., Lima, F. W. S., Macedo-Filho, A., Ferreira, R. S.
We introduce the generalized diffusive epidemic process, which is a metapopulation model for an epidemic outbreak where a non-sedentary population of walkers can jump along lattice edges with diffusion rates $D_S$ or $D_I$ if they are susceptible or
Externí odkaz:
http://arxiv.org/abs/2407.08175
Autor:
Alencar, D. S. M., Neto, J. F. S., Alves, T. F. A., Lima, F. W. S., Ferreira, R. S., Alves, G. A., Macedo-Filho, A.
We discuss the short-time behavior of the majority vote dynamics on scale-free networks at the critical threshold. We introduce a heterogeneous mean-field theory on the critical short-time behavior of the majority-vote model on scale-free networks. I
Externí odkaz:
http://arxiv.org/abs/2405.14634
Autor:
Alencar, D. S. M., Alves, T. F. A., Lima, F. W. S., Ferreira, R. S., Alves, G. A., Macedo-Filho, A.
We use the pair heterogeneous mean-field (PHMF) approximation for an asynchronous version of the susceptible-infected-removed (SIR) model to estimate the epidemic thresholds on complex quenched networks. Our results indicate an improvement compared t
Externí odkaz:
http://arxiv.org/abs/2402.10863
Publikováno v:
Phys. Lett. B 843, 138005 (2023)
In this Letter we introduce some field-theoretic approach for computing the critical properties of systems undergoing continuous phase transitions governed by the $\kappa$-generalized statistics, namely $\kappa$-generalized statistical field theory.
Externí odkaz:
http://arxiv.org/abs/2307.05467
Autor:
Alencar, D. S. M., Alves, T. F. A., Lima, F. W. S., Ferreira, R. S., Alves, G. A., Macedo-Filho, A.
We consider the Majority Vote model coupled with scale-free networks. Recent works point to a non-universal behavior of the Majority Vote model, where the critical exponents depend on the connectivity while the network's effective dimension $D_\mathr
Externí odkaz:
http://arxiv.org/abs/2303.00454
Autor:
Alencar, D. S. M., Alves, T. F. A., Lima, F. W. S., Alves, G. A., Macedo-Filho, A., Ferreira, R. S.
We present a finite-size scaling theory of a contact process with permanent immunity on uncorrelated scale-free networks. We model an epidemic outbreak by an analog of the susceptible-infected-removed model where an infected individual attacks only o
Externí odkaz:
http://arxiv.org/abs/2212.09231
Autor:
Alencar, D. S. M., Alves, T. F. A., Alves, G. A., Ferreira, R. S., Macedo-Filho, A., Lima, F. W. S.
We show results for the contact process on Barabasi networks. The contact process is a model for an epidemic spreading without permanent immunity that has an absorbing state. For finite lattices, the absorbing state is the true stationary state, whic
Externí odkaz:
http://arxiv.org/abs/2201.08708
Autor:
Alencar, D. S. M., Macedo-Filho, A., Alves, T. F. A., Alves, G. A., Ferreira, R. S., Lima, F. W. S.
We present an analysis of an epidemic spreading process on the Apollonian network that can describe an epidemic spreading in a non-sedentary population. The modified diffusive epidemic process was employed in this analysis in a computational context
Externí odkaz:
http://arxiv.org/abs/2110.14141
We define a stochastic reaction-diffusion process that describes a consensus formation in a non-sedentary population. The process is a diffusive version of the Majority Vote model, where the state update follows two stages: in the first stage, spins
Externí odkaz:
http://arxiv.org/abs/2108.12309