Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Alves, Alexandre M."'
In this paper we consider Abel equation $x' = g(t)x^2+f(t)x^3$, where $f$ and $g$ are analytical functions. We proved that if the equation has a center at $x=0$, then the Moment Conditions, i. e., $m_k=\int_{-1}^1f(t)(G(t))^kdt=0,~~k=0,1,2$, is satis
Externí odkaz:
http://arxiv.org/abs/1708.01512
Abel equations of the form $x'(t)=f(t)x^3(t)+g(t)x^2(t)$, $t \in [-a,a]$, where $a>0$ is a constant, $f$ and $g$ are continuous functions, are of interest because of their close relation to planar vector fields. If $f$ and $g$ are odd functions, we p
Externí odkaz:
http://arxiv.org/abs/1707.02664
In this paper, we present two new results to the classical Floquet theory, which provides the Floquet multipliers for two classes of the planar periodic system. One these results provides the Floquet multipliers independently of the solution of syste
Externí odkaz:
http://arxiv.org/abs/1705.02373
Publikováno v:
Bollettino dell'Unione Matematica Italiana; Mar2020, Vol. 13 Issue 1, p49-59, 11p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.