Zobrazeno 1 - 10
of 39
pro vyhledávání: '"Altomani, Andrea"'
Autor:
Altomani, Andrea, Santi, Andrea
Publikováno v:
Adv. Math. 265 (2014), 60-96
Let $V$ be a complex vector space with a non-degenerate symmetric bilinear form and $\mathbb S$ an irreducible module over the Clifford algebra $Cl(V)$ determined by this form. A supertranslation algebra is a $\mathbb Z$-graded Lie superalgebra $\mat
Externí odkaz:
http://arxiv.org/abs/1212.1826
Autor:
Altomani, Andrea, Lawn, Marie-Amélie
We consider isometric immersions in arbitrary codimension of three-dimensional strongly pseudoconvex pseudo-hermitian CR manifolds into the Euclidean space $\mathbb{R}^n$ and generalize in a natural way the notion of associated family. We show that t
Externí odkaz:
http://arxiv.org/abs/1202.4624
Autor:
Altomani, Andrea, Santi, Andrea
Publikováno v:
Indiana University Mathematics Journal 63 issue 1 (2014), 91-117
Let (V,(.,.)) be a pseudo-Euclidean vector space and S an irreducible Cl(V)-module. An extended translation algebra is a graded Lie algebra m = m_{-2}+m_{-1} = V+S with bracket given by ([s,t],v) = b(v.s,t) for some nondegenerate so(V)-invariant refl
Externí odkaz:
http://arxiv.org/abs/1201.0555
Autor:
Altomani, Andrea, Lawn, Marie-Amélie
Using a bigraded differential complex depending on the CR and pseudohermitian structure, we give a characterization of three-dimensional strongly pseudoconvex pseudo-hermitian CR-manifolds isometrically immersed in Euclidean space $\mathbb{R}^n$ in t
Externí odkaz:
http://arxiv.org/abs/1106.2962
We consider a class of compact homogeneous CR manifolds, that we call $\mathfrak n$-reductive, which includes the orbits of minimal dimension of a compact Lie group $K_0$ in an algebraic homogeneous variety of its complexification $K$. For these mani
Externí odkaz:
http://arxiv.org/abs/1106.2779
Autor:
Altomani, Andrea, Medori, Costantino
Publikováno v:
Journal of Geometric Analysis 22 n.3 (2012) 892-909
We study CR quadrics satisfying a symmetry property $(\tilde S)$ which is slightly weaker than the symmetry property $(S)$, recently introduced by W. Kaup, which requires the existence of an automorphism reversing the gradation of the Lie algebra of
Externí odkaz:
http://arxiv.org/abs/1011.3358
Publikováno v:
Boll. Unione Mat. Ital. (9) 3 (2010), no. 2, 221-265
We consider canonical fibrations and algebraic geometric structures on homogeneous CR manifolds, in connection with the notion of CR algebra. We give applications to the classifications of left invariant CR structures on semisimple Lie groups and of
Externí odkaz:
http://arxiv.org/abs/0910.4531
Publikováno v:
Ann. Inst. Fourier (Grenoble) 60 (2010), no. 3, 987-1034
We prove a subelliptic estimate for systems of complex vector fields under some assumptions that generalize the essential pseudoconcavity for $CR$ manifolds and H\"ormander's bracket condition for real vector fields. Applications are given to prove t
Externí odkaz:
http://arxiv.org/abs/0807.4857
Publikováno v:
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 9 (2010), no. 1, 69-109
We investigate the $CR$ geometry of the orbits $M$ of a real form $G_0$ of a complex simple group $G$ in a complex flag manifold $X=G/Q$. We are mainly concerned with finite type, Levi non-degeneracy conditions, canonical $G_0$-equivariant and Mostow
Externí odkaz:
http://arxiv.org/abs/0711.4484
Publikováno v:
Tohoku Math. J. (2) 60, No. 3, 403-422 (2008)
We compute the Euler-Poincar\'e characteristic of the homogeneous compact manifolds that can be described as minimal orbits for the action of a real form in a complex flag manifold.
Comment: 21 pages v2: Major revision
Comment: 21 pages v2: Major revision
Externí odkaz:
http://arxiv.org/abs/0709.2608