Zobrazeno 1 - 10
of 78
pro vyhledávání: '"Aloys Krieg"'
Publikováno v:
Informationspraxis, Vol 7, Iss 1 (2021)
Als Folge der weltweiten Pandemie des Coronavirus im Jahr 2020 sind viele Universitäten kurzfristig gezwungen, zumindest vorübergehend auf Online-Lehre umzustellen. Open Educational Resources (OER) können dabei eine wichtige Rolle spielen, indem s
Externí odkaz:
https://doaj.org/article/3c80fea94b454dc7b96d5f73d4cdb720
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 2013 (2013)
We classify the lattices of rank 16 over the Eisenstein integers which are even unimodular -lattices (of dimension 32). There are exactly 80 unitary isometry classes.
Externí odkaz:
https://doaj.org/article/c9503845aa3643fea57b8e0c81647cf9
Autor:
Aloys Krieg, Felix Schaps
Publikováno v:
Proceedings of the American Mathematical Society.
We characterize the maximal discrete subgroups ofSO+(2,n+2)SO^+(2,n+2), which contain the discriminant kernel of an even lattice with two hyperbolic planes overZ\mathbb {Z}. They coincide with the normalizers inSO+(2,n+2)SO^+(2,n+2)and are given by t
Autor:
Aloys Krieg, Adrian Hauffe-Waschbüsch
We derive explicit isomorphisms between certain congruence subgroups of the Siegel modular group, the Hermitian modular group over an arbitrary imaginary-quadratic number field and the modular group over the Hurwitz quaternions of degree 2 and the di
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bd69affda95531a32018ec447aaa302c
http://arxiv.org/abs/2011.09807
http://arxiv.org/abs/2011.09807
Autor:
Adrian Hauffe-Waschbüsch, Aloys Krieg
Publikováno v:
Springer Proceedings in Mathematics & Statistics ISBN: 9789811587184
In this paper, we outline the Hecke theory for Hermitian modular forms in the sense of Hel Braun for arbitrary class number of the attached imaginary-quadratic number field. The Hecke algebra turns out to be commutative. Its inert part has a structur
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::1a46a96168959b1f4a9360d665ea2a35
https://doi.org/10.1007/978-981-15-8719-1_6
https://doi.org/10.1007/978-981-15-8719-1_6
Autor:
Jonas Gallenkämper, Aloys Krieg
Publikováno v:
International Journal of Number Theory. 14:2409-2423
In this paper, we consider the integral orthogonal group with respect to the quadratic form of signature [Formula: see text] given by [Formula: see text] for square-free [Formula: see text]. The associated Hecke algebra is commutative and also the te
Autor:
Susanne Klöpping, Marlene Scherfer, Susanne Gokus, Stephanie Dachsberger, Aloys Krieg, Andrä Wolter, Ralph Bruder, Wolfram Ressel, Eberhard Umbach
Deutschland hat einen steigenden Bedarf an gut ausgebildeten Ingenieurinnen und Ingenieuren. Grund dafür sind demografische Faktoren sowie die Entwicklung hin zu einer wissens- und technologiebasierten Wirtschaft. Statistische Schätzungen zeigten i
A result by Hashimoto and Ueda says that the graded ring of modular forms with respect to \({\mathrm{SO}}(2,10)\) is a polynomial ring in modular forms of weights 4, 10, 12, 16, 18, 22, 24, 28, 30, 36, 42. In this paper, we show that one may choose E
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::60b28604db89ff261255ecfacf80db86
Autor:
Aloys Krieg, Bernhard Heim
Publikováno v:
Kyoto J. Math. 60, no. 4 (2020), 1191-1207
In this paper we describe a characterization for the Maass space associated with the paramodular group of degree $2$ and squarefree level $N$. As an application we show that the Maass space is invariant under all Hecke operators. As a consequence we
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8cc835dfd01c031cf244783fb960c869