Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Alongkot Suvarnamani"'
Publikováno v:
2021 3rd International Conference on Image Processing and Machine Vision (IPMV).
Autor:
Alongkot Suvarnamani
Publikováno v:
JP Journal of Algebra, Number Theory and Applications. 40:449-459
Autor:
Alongkot Suvarnamani
Publikováno v:
Kyungpook mathematical journal. 56:367-370
Autor:
Alongkot Suvarnamani, Sakunna Koyram
Publikováno v:
Universal Journal of Applied Mathematics. 3:89-93
In this paper, we consider the multiplicative pulsated Fibonacci sequences. First, we show the new proof of the explicit formulas of multiplicative pulsated Fibonacci sequences of second order. Then the second type of multiplicative pulsated Fibonacc
Autor:
Alongkot Suvarnamani, Mongkol Tatong
Publikováno v:
International Journal of GEOMATE. 13
Some mathematicians study the basic concept of the generalized Fibonacci sequence and Lucas sequence which are the (p,q) – Fibonacci sequence and the (p,q) – Lucas sequence. For example, Singh, Sisodiya and Ahmad studied the product of the k-Fibo
Autor:
Alongkot Suvarnamani, Mongkol Tatong
วารสารคณิตศาสตร์ โดย สมาคมคณิตศาสตร์แห่งประเทศไทย ในพระบรมราชูปถัมภ์, 61, 688
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::814d20ffa23b47ceb5c6ef8a084a1313
Autor:
Mongkol Tatong, Alongkot Suvarnamani
Publikováno v:
Archivum Mathematicum. :45-59
We introduce an iterative sequence for finding the common element of the set of fixed points of a nonexpansive mapping and the solutions of the variational inequality problem for tree inverse-strongly monotone mappings. Under suitable conditions, som
Autor:
Alongkot Suvarnamani
Publikováno v:
MATEC Web of Conferences, Vol 189, p 03028 (2018)
For the real world problems, we use some knowledge for explain or solving them. For example, some mathematicians study the basic concept of the generalized Fibonacci sequence and Lucas sequence which are the (p,q) – Fibonacci sequence and the (p,q)
Autor:
Alongkot Suvarnamani
Publikováno v:
International Journal of Pure and Apllied Mathematics. 94
In this paper, we found that (p,x,y,z) = (3,1,0,2) is a unique solution of the Diophantine equation p x + (p + 1) y = z 2 , where p is an odd
Autor:
Mongkol Tatong, Alongkot Suvarnamani
Publikováno v:
International Journal of Pure and Apllied Mathematics. 94
We apply an iterative sequence for finding the common element of the set of fixed points of a nonexpansive mapping and the solutions of the variational inequality problem for tree inverse-strongly monotone mappings. Under suitable conditions, some st