Zobrazeno 1 - 3
of 3
pro vyhledávání: '"Allison E. Sewell"'
Elevated transferrin receptor impairs T cell metabolism and function in systemic lupus erythematosus
Autor:
Kelsey Voss, Allison E. Sewell, Evan S. Krystofiak, Katherine N. Gibson-Corley, Arissa C. Young, Jacob H. Basham, Ayaka Sugiura, Emily N. Arner, William N. Beavers, Dillon E. Kunkle, Megan E. Dickson, Gabriel A. Needle, Eric P. Skaar, W. Kimryn Rathmell, Michelle J. Ormseth, Amy S. Major, Jeffrey C. Rathmell
Publikováno v:
Science Immunology. 8
T cells in systemic lupus erythematosus (SLE) exhibit multiple metabolic abnormalities. Excess iron can impair mitochondria and may contribute to SLE. To gain insights into this potential role of iron in SLE, we performed a CRISPR screen of iron hand
Autor:
Kelsey Voss, Arissa C. Young, Katherine N. Gibson-Corley, Allison E. Sewell, Evan S. Krystofiak, Jacob H. Bashum, William N. Beavers, Ayaka Sugiura, Eric P. Skaar, Michelle J. Ormseth, Amy S. Major, Jeffrey C. Rathmell
T cells in systemic lupus erythematosus (SLE) exhibit mitochondrial abnormalities including elevated oxidative stress. Because excess iron can promote these phenotypes, we tested iron regulation of SLE T cells. A CRISPR screen identified Transferrin
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::2eb6ea204b8d2f75329f141dd516ccd2
https://doi.org/10.1101/2021.11.25.470053
https://doi.org/10.1101/2021.11.25.470053
Autor:
Darren R. Heintzman, Alanna M. Cameron, Samantha N. Freedman, Juan C. Garcia-Canaveras, Kelsey Voss, Arissa Young, Gabriela Andrejeva, Xiang Ye, Patrik Foerch, Jeffrey C. Rathmell, Katherine L. Beier, Allison E. Sewell, Dalton Greenwood, Ayaka Sugiura, Melissa M. Wolf, Xincheng Xu, Dawn C. Newcomb, Matthew Z. Madden, Shailesh K. Shahi, John Karijolich, Joshua D. Rabinowitz, Ashutosh K. Mangalam, Nowrin U. Chowdhury, Tim Bourne
Publikováno v:
Immunity. 55:65-81.e9
Summary Antigenic stimulation promotes T cell metabolic reprogramming to meet increased biosynthetic, bioenergetic, and signaling demands. We show that the one-carbon (1C) metabolism enzyme methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) regulates