Zobrazeno 1 - 10
of 30
pro vyhledávání: '"Allison, Donald C. S."'
Applications involving large sparse nonsymmetric linear systems encourage parallel implementations of robust iterative solution methods, such as GMRES(k). Two parallel versions of GMRES(k) based on different data distributions and using Householder r
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2485::0ed5540e6863813ac75974f77ebf5741
http://eprints.cs.vt.edu/archive/00000530/01/gmrPAA01.pdf
http://eprints.cs.vt.edu/archive/00000530/01/gmrPAA01.pdf
Autor:
Abrams, Marc, Allison, Donald C. S., Kafura, Dennis G., Ribbens, Calvin J., Rosson, Mary Beth, Shaffer, Clifford A., Watson, Layne T.
The purpose of this report is to give an overview of the activities of the research group in problem solving environments (PSEs) at Virginia Tech. Most of the report is devoted to an introduction to the area itself, with particular emphasis on our pe
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2485::99c576187b28df5dfdc6b1bca061870d
http://eprints.cs.vt.edu/archive/00000500/
http://eprints.cs.vt.edu/archive/00000500/
The success of homotopy methods in solving large-scale optimization problems and nonlinear systems of equations depends heavily on the solution of large sparse nonsymmetric linear systems on parallel architectures. Iterative solution techniques, such
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2485::64080b5163531cfe635131f58e94a595
http://eprints.cs.vt.edu/archive/00000479/
http://eprints.cs.vt.edu/archive/00000479/
The success of homotopy methods in solving large-scale optimization problems and nonlinear systems of equations depends heavily on the solution of large sparse nonsymmetric linear systems on parallel architectures. Iterative solution techniques, such
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2485::777fadc130d37be53920cf41e7be241b
https://hdl.handle.net/10919/19978
https://hdl.handle.net/10919/19978
Probability-one homotopy algorithms are a class of methods for solving nonlinear systems of equations that are globally convergent from an arbitrary starting point with probability one. The essence of these homotopy algorithms is the construction of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::d0342f0ccc7f6233b1d7a666938e5d94
http://eprints.cs.vt.edu/archive/00000251/01/TR-91-04.pdf
http://eprints.cs.vt.edu/archive/00000251/01/TR-91-04.pdf
Results are reported for a series of experiments involving numerical curve tracking on a shared memory parallel computer. Several algorithms exist for finding zeros or fixed points of nonlinear systems of equations that are globally convergent for al
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2485::6d91062a079875b6f4a4158bfc80699c
https://hdl.handle.net/10919/19687
https://hdl.handle.net/10919/19687
Autor:
Allison, Donald C. S., Noga, M. T.
The two-dimensional convex hull algorithms of Graham, Jarvis, Eddy, and Akl and Toussaint are tested on four different planar point distributions. Some modifications are discussed for both the Graham and Jarvis algorithms. Timings taken of FORTRAN im
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2485::c4ccb0f1de0ce40c3cd8e3a4d23716e1
http://eprints.cs.vt.edu/archive/00000879/01/CS83001-R.pdf
http://eprints.cs.vt.edu/archive/00000879/01/CS83001-R.pdf
Autor:
Chadha, Ritu, Allison, Donald C. S.
We discuss a new heuristic for solving the Euclidean Traveling Salesman Problem (ETSP). This heuristic is a convex hull-based method and makes use of the Delaunay triangulation of the set of cities to compute a tour for the given set of cities. We co
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2485::7f3c58882f0e00797289d2f299b61ebd
https://hdl.handle.net/10919/19385
https://hdl.handle.net/10919/19385
Autor:
Chadha, Ritu, Allison, Donald C. S.
We discuss the problem of decomposing rectilinear regions, with or without holes, into a minimum number of rectangles. There are two different problems considered here: decomposing a figure into non-overlapping parts, called partitioning, and decompo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2485::4b0de251bc748e799c0553e22efa4e0f
https://hdl.handle.net/10919/19962
https://hdl.handle.net/10919/19962
Polynomial systems consist of n polynomial functions in n variables, with real or complex coefficients. Finding zeros of such systems is challenging because there may be a large number of solutions, and Newton-type methods can rarely be guaranteed to
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2485::f3c511a6d8eeded145bbd596d4b7783c
http://eprints.cs.vt.edu/archive/00000089/
http://eprints.cs.vt.edu/archive/00000089/