Zobrazeno 1 - 10
of 105
pro vyhledávání: '"Allendes, Alejandro"'
Bilinear optimal control for the Stokes-Brinkman equations: a priori and a posteriori error analyses
We analyze a bilinear optimal control problem for the Stokes--Brinkman equations: the control variable enters the state equations as a coefficient. In two- and three-dimensional Lipschitz domains, we perform a complete continuous analysis that includ
Externí odkaz:
http://arxiv.org/abs/2404.18348
We study the linear elasticity system subject to singular forces. We show existence and uniqueness of solutions in two frameworks: weighted Sobolev spaces, where the weight belongs to the Muckenhoupt class $A_2$; and standard Sobolev spaces where the
Externí odkaz:
http://arxiv.org/abs/2310.10866
In two-dimensional Lipschitz domains, we analyze a Brinkman--Darcy--Forchheimer problem on the weighted spaces $\mathbf{H}_0^1(\omega,\Omega) \times L^2(\omega,\Omega)/\mathbb{R}$, where $\omega$ belongs to the Muckenhoupt class $A_2$. Under a suitab
Externí odkaz:
http://arxiv.org/abs/2305.04427
In Lipschitz domains, we study a Darcy-Forchheimer problem coupled with a singular heat equation by a nonlinear forcing term depending on the temperature. By singular we mean that the heat source corresponds to a Dirac measure. We establish the exist
Externí odkaz:
http://arxiv.org/abs/2211.10325
Publikováno v:
In Applied Mathematics Letters December 2024 158
We consider a pointwise tracking optimal control problem for a semilinear elliptic partial differential equation. We derive the existence of optimal solutions and analyze first and, necessary and sufficient, second order optimality conditions. We dev
Externí odkaz:
http://arxiv.org/abs/2009.00736
In Lipschitz two and three dimensional domains, we study the existence for the so--called Boussinesq model of thermally driven convection under singular forcing. By singular we mean that the heat source is allowed to belong to $H^{-1}(\varpi,\Omega)$
Externí odkaz:
http://arxiv.org/abs/2005.07548
In two and three dimensional Lipschitz, but not necessarily convex, polytopal domains, we propose and analyze a posteriori error estimators for an optimal control problem involving the stationary Navier--Stokes equations; control constraints are also
Externí odkaz:
http://arxiv.org/abs/2004.03086
We devise and analyze a reliable and efficient a posteriori error estimator for a semilinear control-constrained optimal control problem in two and three dimensional Lipschitz, but not necessarily convex, polytopal domains. We consider a fully discre
Externí odkaz:
http://arxiv.org/abs/1911.09628
In two dimensions, we propose and analyze an a posteriori error estimator for finite element approximations of the stationary Navier Stokes equations with singular sources on Lipschitz, but not necessarily convex, polygonal domains. Under a smallness
Externí odkaz:
http://arxiv.org/abs/1910.05122