Zobrazeno 1 - 10
of 173
pro vyhledávání: '"Allan Peterson"'
Publikováno v:
Electronic Journal of Differential Equations, Vol 2020, Iss 04,, Pp 1-19 (2020)
This article studies a boundary value problem for a nonlinear Caputo nabla fractional difference equation. We obtain quadratic convergence results for this equation using the generalized quasi-linearization method. Further, we obtain the converge
Externí odkaz:
https://doaj.org/article/50ffafe36c3442428c28c4200a148333
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2017, Iss 51, Pp 1-16 (2017)
This paper is concerned with finding properties of solutions to initial value problems for nonlinear Caputo nabla fractional difference equations. We obtain existence and rapid convergence results for such equations by use of Schauder's fixed point t
Externí odkaz:
https://doaj.org/article/5fffe7e892374d04b83166b5757ae49c
Publikováno v:
Electronic Journal of Differential Equations, Vol 2016, Iss 71,, Pp 1-15 (2016)
This article concerns the oscillation of solutions to second-order half-linear dynamic equations with a variable delay. By using integral averaging techniques and generalized Riccati transformations, new oscillation criteria are obtained. Our resu
Externí odkaz:
https://doaj.org/article/35713131db464390a01a1fea95484809
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2015, Iss 89, Pp 1-18 (2015)
Consider the following $\nu$-th order nabla and delta fractional difference equations \begin{equation} \begin{aligned} \nabla^\nu_{\rho(a)}x(t)&=c(t)x(t),\quad \quad t\in\mathbb{N}_{a+1},\\ x(a)&>0. \end{aligned}\tag{$\ast$} \end{equation} and \begin
Externí odkaz:
https://doaj.org/article/fdd4b2e36e844540a977c4d4e183eca8
Publikováno v:
Electronic Journal of Differential Equations, Vol 2015, Iss 163,, Pp 1-7 (2015)
In this article, we are concerned with the relationships between the sign of Caputo fractional differences and integer nabla differences. In particular, we show that if $N-1
Externí odkaz:
https://doaj.org/article/4b26909097b84fc4ae29901775c0b06c
Publikováno v:
Advances in Difference Equations, Vol 2004, Iss 2, Pp 93-109 (2004)
This work formulates existence, uniqueness, and uniqueness-implies-existence theorems for solutions to two-point vector boundary value problems on time scales. The methods used include maximum principles, a priori bounds on solutions, and the nonline
Externí odkaz:
https://doaj.org/article/9e3d56f3071c4c4cac94ee9a77876ea4
Publikováno v:
Journal of Difference Equations and Applications. 25:815-836
This paper gives a generalized h-fractional Gronwall's inequality. Applying this result, we prove the uniqueness and give bounds on solutions for a nonlinear h-fractional difference system ...
Publikováno v:
Mathematical Inequalities & Applications. :1-23
Autor:
Wei Hu, Allan Peterson
Publikováno v:
Springer Proceedings in Mathematics & Statistics ISBN: 9783030601065
We study boundary value problems with the Caputo nabla difference in the context of discrete fractional nabla calculus, especially when the right boundary condition has a fractional order. We first construct the Green’s function for the general cas
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::ced9be43a9ca8c34be7404bf31601515
https://doi.org/10.1007/978-3-030-60107-2_1
https://doi.org/10.1007/978-3-030-60107-2_1
This paper presents some new propositions related to the fractional order $h$-difference operators, for the case of general quadratic forms and for the polynomial type, which allow proving the stability of fractional order $h$-difference systems, by
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::79445eab52164702cf38195023a2deb2