Zobrazeno 1 - 3
of 3
pro vyhledávání: '"Allan Keeton"'
Publikováno v:
Canadian Mathematical Bulletin. 64:651-666
For an integer $n\geq 8$ divisible by $4$ , let $R_n={\mathbb Z}[\zeta _n,1/2]$ and let $\operatorname {\mathrm {U_{2}}}(R_n)$ be the group of $2\times 2$ unitary matrices with entries in $R_n$ . Set $\operatorname {\mathrm {U_2^\zeta }}(R_n)=\{\gamm
Suppose $4|n$, $n\geq 8$, $F=F_n=\mathbb{Q}(\zeta_n+\bar{\zeta}_n)$, and there is one prime $\mathfrak{p}=\mathfrak{p}_n$ above $2$ in $F_n$. We study amalgam presentations for $\operatorname{PU_{2}}(\mathbb{Z}[\zeta_n, 1/2])$ and $\operatorname{PSU_
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::45513a1188da0cf4993ea61a4276f7e1
http://arxiv.org/abs/2001.01695
http://arxiv.org/abs/2001.01695
Publikováno v:
arXiv
Jordan, B W, Keeton, A G, Poonen, B, Rains, E M, Shepherd-Barron, N & Tate, J T 2018, ' Abelian varieties isogenous to a power of an elliptic curve ', COMPOSITIO MATHEMATICA, vol. 154, no. 5, pp. 934-959 . https://doi.org/10.1112/S0010437X17007990
Jordan, B W, Keeton, A G, Poonen, B, Rains, E M, Shepherd-Barron, N & Tate, J T 2018, ' Abelian varieties isogenous to a power of an elliptic curve ', COMPOSITIO MATHEMATICA, vol. 154, no. 5, pp. 934-959 . https://doi.org/10.1112/S0010437X17007990
Let $E$ be an elliptic curve over a field $k$. Let $R:= \text{End}\, E$. There is a functor $\mathscr{H}\!\!\mathit{om}_R(-,E)$ from the category of finitely presented torsion-free left $R$-modules to the category of abelian varieties isogenous to a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::abb7924013b953f2df6717d9362b5611