Zobrazeno 1 - 10
of 258
pro vyhledávání: '"Aline Bonami"'
Publikováno v:
The Journal of Geometric Analysis. 31:8879-8902
It is well known that Lipschitz spaces on the torus are an algebra. It is no more the case in the non compact situation because of the behavior at infinity. This is a companion article to Bonami et al. (J Math Pures Appl (9) 131:130–170, 2019), whe
Publikováno v:
Colloquium Mathematicum. 160:223-245
For $\mathbb B^n$ the unit ball of $\mathbb C^n$, we consider Bergman-Orlicz spaces of holomorphic functions in $L^\Phi_\alpha(\mathbb B^n)$, which are generalizations of classical Bergman spaces. We obtain atomic decomposition for functions in the B
Publikováno v:
Bulletin des Sciences Mathématiques. 181:103206
Publikováno v:
Recercat. Dipósit de la Recerca de Catalunya
instname
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Publicacions Matemàtiques; Vol. 54, Núm. 2 (2010); p. 341-358
Publicacions Matematiques (Barcelona)
Publicacions Matematiques (Barcelona), 2010, pp.341-358
Publ. Mat. 54, no. 2 (2010), 341-358
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
instname
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Publicacions Matemàtiques; Vol. 54, Núm. 2 (2010); p. 341-358
Publicacions Matematiques (Barcelona)
Publicacions Matematiques (Barcelona), 2010, pp.341-358
Publ. Mat. 54, no. 2 (2010), 341-358
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
We give a $\operatorname{div}$-$\operatorname{curl}$ type lemma for the wedge product of closed differential forms on ${\mathbb R}^n$ when they have coefficients respectively in a Hardy space and $L^\infty$ or $\mathit{BMO}$. In this latter case, the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f18beca92aa4fbac994e7c467a39dc89
http://hdl.handle.net/2072/391309
http://hdl.handle.net/2072/391309
Autor:
Zaineb Aloui, Aline Bonami
Publikováno v:
Journal of Mathematical Analysis and Applications. 508:125891
Autor:
Aline Bonami, Abderrazek Karoui
Publikováno v:
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis, Elsevier, 2015, ⟨10.1016/j.acha.2015.09.001⟩
Applied and Computational Harmonic Analysis, Elsevier, 2015, ⟨10.1016/j.acha.2015.09.001⟩
Recently, there is a growing interest in the spectral approximation by the Prolate Spheroidal Wave Functions (PSWFs) $��_{n, c},\, c>0.$ This is due to the promising new contributions of these functions in various classical as well as emerging ap
Autor:
Sylvie Alayrangues, Aline Bonami, Samuel Guibal, Halima Hadi, Daniel Hennequin, Daniel Bideau, Cyril Imbert
Publikováno v:
Reflets de la physique. :32-36
Le 1er fevrier 2016 s’est tenue a la prefecture de Paris et d’Ile-de-France (5, rue Leblanc, Paris, 15e ) la troisieme journee Sciences et medias. Ces journees sont organisees tous les deux ans par des societes savantes scientifiques. Se sont ass
Autor:
Aline Bonami, Abderrazek Karoui
Publikováno v:
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis, Elsevier, 2015, ⟨10.1016/j.acha.2015.05.003⟩
Applied and Computational Harmonic Analysis, Elsevier, 2015, ⟨10.1016/j.acha.2015.05.003⟩
For fixed $c,$ the Prolate Spheroidal Wave Functions (PSWFs) $\psi_{n, c}$ form a basis with remarkable properties for the space of band-limited functions with bandwidth $c$. They have been largely studied and used after the seminal work of D. Slepia
Publikováno v:
Journal de Mathématiques Pures et Appliquées
Journal de Mathématiques Pures et Appliquées, Elsevier, 2019, 131, pp.130-170. ⟨10.1016/j.matpur.2019.05.003⟩
Journal de Mathématiques Pures et Appliquées, Elsevier, 2019, 131, pp.130-170. ⟨10.1016/j.matpur.2019.05.003⟩
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4678d24fe9fca35c680948f994972e69
https://hal.archives-ouvertes.fr/hal-03488449/file/S0021782419300996.pdf
https://hal.archives-ouvertes.fr/hal-03488449/file/S0021782419300996.pdf