Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Aliaksandr Kroshchanka"'
Autor:
Chaoxiang Chen, Vladimir Golovko, Aliaksandr Kroshchanka, Egor Mikhno, Marta Chodyka, Piotr Lichograj
Publikováno v:
Frontiers in Neuroscience, Vol 18 (2024)
Unsupervised learning based on restricted Boltzmann machine or autoencoders has become an important research domain in the area of neural networks. In this paper mathematical expressions to adaptive learning step calculation for RBM with ReLU transfe
Externí odkaz:
https://doaj.org/article/db41bf22ac614dc1927ec0f5735a86f3
Publikováno v:
Pattern Recognition and Image Analysis. 31:132-143
Training methods for deep neural networks (DNNs) are analyzed. It is shown that maximizing the likelihood function of the distribution of the input data P(x) in the space of synaptic connections of a restricted Boltzmann machine (RBM) is equivalent t
Autor:
Aliaksandr Kroshchanka, Vladimir Golovko, Egor Mikhno, Mikhail Kovalev, Vadim Zahariev, Aleksandr Zagorskij
Publikováno v:
Open Semantic Technologies for Intelligent Systems ISBN: 9783031158810
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::2118c768a17a2b9385e29a129f9cc571
https://doi.org/10.1007/978-3-031-15882-7_15
https://doi.org/10.1007/978-3-031-15882-7_15
Publikováno v:
2021 11th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS).
Publikováno v:
Communications in Computer and Information Science ISBN: 9783030604462
The paper presents the implementation of an intelligent decision support system (IDSS) to solve a real manufacturing problem at JSC “Savushkin Product”. The proposed system is intended to control the quality of product labeling, based on neuro-sy
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::00d0c9d926563e3d877ed5c323526b3a
https://doi.org/10.1007/978-3-030-60447-9_6
https://doi.org/10.1007/978-3-030-60447-9_6
Publikováno v:
Optical Memory and Neural Networks. 25:127-141
Over the last decade, the deep neural networks are a hot topic in machine learning. It is breakthrough technology in processing images, video, speech, text and audio. Deep neural network permits us to overcome some limitations of a shallow neural net
Publikováno v:
IJCCI (NCTA)
Scopus-Elsevier
Scopus-Elsevier
Autor:
Aliaksandr Kroshchanka, Volodymyr Turchenko, Vladimir Golovko, Douglas Treadwell, Stanislaw Jankowski
Publikováno v:
IDAACS
Over the last decade, deep belief neural networks have been a hot topic in machine learning. Such networks can perform a deep hierarchical representation of input data. The first layer can extract low-level features, the second layer can extract high
Publikováno v:
Communications in Computer and Information Science ISBN: 9783319082004
Deep belief neural network represents many-layered perceptron and permits to overcome some limitations of conventional multilayer perceptron due to deep architecture. The supervised training algorithm is not effective for deep belief neural network a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::71391516d37a2e5624c9404ee1478881
https://doi.org/10.1007/978-3-319-08201-1_13
https://doi.org/10.1007/978-3-319-08201-1_13