Zobrazeno 1 - 10
of 22
pro vyhledávání: '"Ali Shojaei-Fard"'
Autor:
Ali Shojaei-Fard
Publikováno v:
Nuclear Physics B, Vol 991, Iss , Pp 116220- (2023)
Thanks to Feynman graphons, as mathematical tools in dealing with Dyson–Schwinger equations, we formulate a new statistical mechanical model for the study of equilibrium states and observables associated with the solution space of quantum motions i
Externí odkaz:
https://doaj.org/article/3bd1a20f286b496ab98f6e22e400a77e
Autor:
Ali Shojaei-Fard
Publikováno v:
Nuclear Physics B, Vol 969, Iss , Pp 115478- (2021)
Strongly coupled Dyson–Schwinger equations generate infinite power series of running coupling constants together with Feynman diagrams with increasing loop orders as coefficients. Theory of graphons for sparse graphs can address a new useful approa
Externí odkaz:
https://doaj.org/article/9b8ed3696dc54f83b8bd039ad34503de
Autor:
Ali Shojaei-Fard
Publikováno v:
Opuscula Mathematica, Vol 38, Iss 3, Pp 427-455 (2018)
The article builds a new enrichment of the Connes-Kreimer renormalization Hopf algebra of Feynman diagrams in the language of graph functions.
Externí odkaz:
https://doaj.org/article/6bed5a36566d45abaa17f295f763b7f2
Autor:
Ali Shojaei-Fard
Publikováno v:
Ali Shojaei-Fard
The article applies graph functions to extend the Kontsevich differential graded Lie algebraic formalism (in Deformation Quantization) to infinite Kontsevich graphs on the basis of the Connes-Kreimer Hopf algebraic renormalization and the theory of
Autor:
Ali Shojaei-Fard
Publikováno v:
Bulletin of the Transilvania University of Brasov. Series III: Mathematics and Computer Science. :139-158
Thanks to the theory of graphons and random graphs, Feynman graphons are new analytic tools for the study of infinities in (strongly coupled) gauge field theories. We formulate the Halting problem in Feynman graphon processes to build a new theory of
Publikováno v:
Haft Hesar Journal of Environmental Studies. 11:119-131
Autor:
Ali Shojaei-Fard
Publikováno v:
Journal of Mathematical Sciences
Autor:
Ali Shojaei-Fard
Publikováno v:
Russian Journal of Mathematical Physics
The paper studies the behavior of equations of motions of Green’s functions under different running coupling constants in strongly coupled gauge field theories in terms of the Kolmogorov complexity.
Autor:
Ali Shojaei-Fard
Publikováno v:
Forum Mathematicum.
We explain the foundations of a new class of formal languages for the construction of large Feynman diagrams which contribute to solutions of all combinatorial Dyson–Schwinger equations in a given strongly coupled gauge field theory. Then we build
Autor:
Ali Shojaei-Fard
Publikováno v:
Math.Phys.Anal.Geom.
Math.Phys.Anal.Geom., 2021, 24 (2), pp.18. ⟨10.1007/s11040-021-09389-z⟩
Math.Phys.Anal.Geom., 2021, 24 (2), pp.18. ⟨10.1007/s11040-021-09389-z⟩
Feynman graphon representations of Feynman diagrams lead us to build a new separable Banach space $\mathcal {S}^{\Phi ,g}_{\approx }$ originated from the collection of all Dyson–Schwinger equations in a given (strongly coupled) gauge field theory