Zobrazeno 1 - 10
of 18
pro vyhledávání: '"Ali S. Janfada"'
Autor:
Ali S. Janfada
Algorithms are the essence of programming. After their construction, they have to be translated to the codes of a specific programming language. There exists a maximum of ten basic algorithmic templates. This textbook aims to provide the reader with
Autor:
Ali S. Janfada, Mahnaz Ahmadi
Publikováno v:
Volume: 31, Issue: 31 134-142
International Electronic Journal of Algebra
International Electronic Journal of Algebra
We show that the quartic Diophantine equations $ax^4+by^4=cz^2$ has only trivial solution in the Gaussian integers for some particular choices of $a,b$ and $c$. Our strategy is by elliptic curves method. In fact, we exhibit two null-rank correspondin
Publikováno v:
Iranian Journal of Mathematical Sciences and Informatics. 15:15-21
Autor:
Ali S. Janfada, Kamran Nabardi
Publikováno v:
Mathematica Slovaca. 69:1245-1248
Considering the equation x4 + y4 = n(u4 + v4), we first investigate a necessary condition by which the equation has solution and then, for infinitely many n′s we present the integral solutions.
Publikováno v:
Proceedings - Mathematical Sciences. 131
In this paper, we consider the symmetric diagonal Diophantine equation $$x^5+ky^q+k'z^r=u^5+kv^q+k'w^r$$ , where k and $$k'$$ are nonzero rational numbers. We prove that if $$2 \le q,r \le 5$$ and $$(q,r) \ne (5,5)$$ this equation admits infinitely m
Autor:
Ali S. Janfada, Ghorban Soleymanpour
Publikováno v:
Volume: 29, Issue: 29 120-133
International Electronic Journal of Algebra
International Electronic Journal of Algebra
Let $C$ be a commutative ring and $C[x_1,x_2,\ldots]$ the polynomial ring in a countable number of variables $x_i$ of degree 1. Suppose that the differential operator $d^1=\sum_i x_{i} \partial_{i} $ acts on $C[x_1,x_2,\ldots]$. Let $\mathbb{Z}_p$ be
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::eb25ae53be18bc88c95ccfbfeb07442d
https://dergipark.org.tr/tr/pub/ieja/issue/59383/772801
https://dergipark.org.tr/tr/pub/ieja/issue/59383/772801
Autor:
Hassan Shabani-Solt, Ali S. Janfada
Publikováno v:
Kodai Math. J. 41, no. 1 (2018), 160-166
For a nonzero integer $d$, a celebrated Siegel Theorem says that the number $N(d)$ of integral solutions of Mordell equation $y^2+x^3=d$ is finite. We find a lower bound for $N(d)$, showing that the number of solutions of Mordell equation increases d
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fc5871d3a49f26858a7f018f43310a95
https://projecteuclid.org/euclid.kmj/1521424830
https://projecteuclid.org/euclid.kmj/1521424830
Autor:
Ali S. Janfada
Publikováno v:
Communications of the Korean Mathematical Society. 29:463-478
Autor:
Ali S. Janfada
Publikováno v:
Rendiconti del Circolo Matematico di Palermo. 60:403-408
The symmetric hit problem was introduced for the first time by the author in his PhD thesis. The aim of this paper is to prove an important conjecture in the symmetric hit problem in an special case.