Zobrazeno 1 - 10
of 83
pro vyhledávání: '"Ali, Md Firoz"'
Let $\mathcal{S}^*(\varphi)$ be the class of all analytic functions $f$ in the unit disk $\mathbb{D}=\{z\in\mathbb{C}:|z|<1\}$, normalized by $f(0)=f'(0)-1=0$ that satisfy the subordination relation $zf'(z)/f(z)\prec\varphi(z)$, where $\varphi$ is an
Externí odkaz:
http://arxiv.org/abs/2409.20216
Autor:
Ali, Md Firoz, Pandit, Sushil
In this article, we provide some necessary and sufficient coefficients conditions for a harmonic mapping to be hereditarily spirallike. Also, we give growth estimate for certain harmonic hereditarily spirallike mappings. Moreover, we connect the conc
Externí odkaz:
http://arxiv.org/abs/2309.00798
Autor:
Ali, Md Firoz, Pandit, Sushil
We connect the pre-Schwarzian norm of logharmonic mappings to the pre-Schwarzian norm of an analytic function and establish some necessary and sufficient conditions under which locally univalent logharmonic mappings have a finite pre-Schwarzian norm.
Externí odkaz:
http://arxiv.org/abs/2308.12505
Autor:
Ali, Md Firoz, Pandit, Sushil
In the present article, we discuss about the estimate of the pre-Schwarzian and Schwarzian norms for locally univalent harmonic functions $f=h+\overline{g}$ in the unit disk $\mathbb{D}:=\{z\in\mathbb{C}:\, |z|<1\}$. In this regard, we first rectify
Externí odkaz:
http://arxiv.org/abs/2307.14793
Autor:
Ali, Md Firoz, Pal, Sanjit
Let $\mathcal{A}$ denote the class of analytic functions $f$ in the unit disk $\mathbb{D}=\{z\in\mathbb{C}:|z|<1\}$ normalized by $f(0)=0$, $f'(0)=1$. For $-\pi/2<\alpha<\pi/2$, let $\mathcal{S}_{\alpha}$ be the subclass of $\mathcal{A}$ consisting o
Externí odkaz:
http://arxiv.org/abs/2307.08976
Autor:
Ali, Md Firoz, Pal, Sanjit
Publikováno v:
Proceedings of the Edinburgh Mathematical Society 67 (2024) 299-315
Externí odkaz:
http://arxiv.org/abs/2212.06377
Autor:
Ali, Md Firoz, Pal, Sanjit
Let $\mathcal{A}$ denote the class of analytic functions $f$ in the unit disk $\mathbb{D}=\{z\in\mathbb{C}:|z|<1\}$ normalized by $f(0)=0$, $f'(0)=1$. In the present article, we obtain the sharp estimates of the Schwarzian norm for functions in the c
Externí odkaz:
http://arxiv.org/abs/2212.06374
For $0<\lambda\le 1$, let $\mathcal{U}(\lambda)$ be the class analytic functions $f(z)= z+\sum_{n=2}^{\infty}a_n z^n$ in the unit disk $\mathbb{D}$ satisfying $|f'(z)(z/f(z))^2-1|<\lambda$ and $\mathcal{U}:=\mathcal{U}(1)$. In the present article, we
Externí odkaz:
http://arxiv.org/abs/2006.15577
We continue our study on variability regions in \cite{Ali-Vasudevarao-Yanagihara-2018}, where the authors determined the region of variability $V_\Omega^j (z_0, c ) = \{ \int_0^{z_0} z^{j}(g(z)-g(0))\, d z : g({\mathbb D}) \subset \Omega, \; (P^{-1}
Externí odkaz:
http://arxiv.org/abs/2006.15572