Zobrazeno 1 - 10
of 733
pro vyhledávání: '"Algorithme EM"'
Expectation-Maximization (EM) algorithm is a widely used iterative algorithm for computing maximum likelihood estimate when dealing with Gaussian Mixture Model (GMM). When the sample size is smaller than the data dimension, this could lead to a singu
Externí odkaz:
http://arxiv.org/abs/2307.01955
Publikováno v:
Revue des Nouvelles Technologies de l'Information (RNTI), Statistique et nouvelles technologies de l'information (2011) 15-32
A non linear regression approach which consists of a specific regression model incorporating a latent process, allowing various polynomial regression models to be activated preferentially and smoothly, is introduced in this paper. The model parameter
Externí odkaz:
http://arxiv.org/abs/1312.6978
Publikováno v:
RFIAP 2022-Reconnaissance des Formes, Image, Apprentissage et Perception
RFIAP 2022-Reconnaissance des Formes, Image, Apprentissage et Perception, Jul 2022, Vannes, France. pp.1-10
RFIAP 2022-Reconnaissance des Formes, Image, Apprentissage et Perception, Jul 2022, Vannes, France. pp.1-10
This paper presents a CNN-based fully unsupervised method for motion segmentation from optical flow. We assume that the input optical flow can be represented as a piecewise set of parametric motion models, typically, affine or quadratic motion models
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::dde7aa5b28bfb32fdcbbdd2b7ffa3dbf
https://hal.inria.fr/hal-03926935
https://hal.inria.fr/hal-03926935
Autor:
Martel, Yannick
L’algorithme EM (Dempster et al., 1977) permet de construire une séquence d’estimateurs qui converge vers l’estimateur de vraisemblance maximale pour des modèles à données manquantes pour lesquels l’estimateur du maximum de vraisemblance
Externí odkaz:
http://hdl.handle.net/1866/25477
Publikováno v:
Computational Statistics and Data Analysis
Computational Statistics and Data Analysis, Elsevier, 2017, 111, pp.27-47. ⟨10.1016/j.csda.2017.01.006⟩
Computational Statistics and Data Analysis, Elsevier, 2017, 111, pp.27-47. ⟨10.1016/j.csda.2017.01.006⟩
International audience; A novel approach to perform unsupervised sequential learning for functional data is proposed. The goal is to extract reference shapes (referred to as templates) from noisy, deformed and censored realizations of curves and imag
This article introduces an extension of an EM algorithm (Expectation Maximization) published recently by the authors allowing to estimate jointly the center and the radius of an hypersphere as well as the statistical model hyperparameters acounting t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______166::f32ba66af64980500198ada4578f337c
https://hal.science/hal-03693945v2
https://hal.science/hal-03693945v2
Autor:
Antoine Barbieri, Myriam Tami, Xavier Bry, Sophie Gourgou, Christian Lavergne, D. Azria, Caroline Mollevi
Publikováno v:
EPICLIN 9 / 22èmes journées des statisticiens des Centres de Lutte Contre le Cancer (CLCC)
EPICLIN 9 / 22èmes journées des statisticiens des Centres de Lutte Contre le Cancer (CLCC), May 2015, Montpellier, France
EPICLIN 9 / 22èmes journées des statisticiens des Centres de Lutte Contre le Cancer (CLCC), May 2015, Montpellier, France
Introduction En oncologie, la qualite de vie relative a la sante (QdV) est devenue un critere essentiel dans les essais cliniques mais son analyse longitudinale reste complexe et non standardisee. Un des freins conceptuels de ce critere est son aspec
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f3388ddf6b6ba0b4cbe405a40a67ebe2
https://hal.archives-ouvertes.fr/hal-01207258v2/file/Abstract_Epiclin.pdf
https://hal.archives-ouvertes.fr/hal-01207258v2/file/Abstract_Epiclin.pdf
Publikováno v:
EUSIPCO
EUSIPCO, 2019, Villeneuve-d'Ascq, France
EUSIPCO, 2019, Villeneuve-d'Ascq, France
International audience
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::383b1ca03b46f4079b627ab8260ac4e6
https://hal.archives-ouvertes.fr/hal-03342877
https://hal.archives-ouvertes.fr/hal-03342877
Publikováno v:
JDS 2014
JDS 2014 Rennes
JDS 2014 Rennes, Jun 2014, Rennes, France
JDS 2014 Rennes
JDS 2014 Rennes, Jun 2014, Rennes, France
National audience; Introduced in the 1970s by Jöreskog, structural equation models with factors allow to connect unobservable variables, called latent. Originally, the only parameter estimation method used on that models was analysis of covariance s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2592::34d1db2c7c20418bfeb95af761adef5d
https://hal.archives-ouvertes.fr/hal-01075781
https://hal.archives-ouvertes.fr/hal-01075781
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.