Zobrazeno 1 - 10
of 46
pro vyhledávání: '"Alfred Witkowski"'
Publikováno v:
Opuscula Mathematica, Vol 35, Iss 3, Pp 397-410 (2015)
We give a probabilistic version of Levinson's inequality under Mercer's assumption of equal variances for the family of 3-convex functions at a point. We also show that this is the largest family of continuous functions for which the inequality holds
Externí odkaz:
https://doaj.org/article/c5885bf78bb64efbaa3af0260bc88cef
Autor:
Alfred Witkowski
Publikováno v:
Annales Universitatis Paedagogicae Cracoviensis: Studia Mathematica, Vol 12, Iss 1, Pp 59-67 (2013)
We give a very simple proof of the classical Levinson inequality and generalise the result by Mercer.
Externí odkaz:
https://doaj.org/article/324fdb1fef734af196383c466f7c020d
Autor:
Szymon Wąsowicz, Alfred Witkowski
Publikováno v:
Opuscula Mathematica, Vol 32, Iss 3, Pp 591-600 (2012)
It is well-known that the left term of the classical Hermite-Hadamard inequality is closer to the integral mean value than the right one. We show that in the multivariate case it is not true. Moreover, we introduce some related inequality comparing t
Externí odkaz:
https://doaj.org/article/7d93327dfdb94f4d8def0cd84c5cea08
Autor:
Alfred Witkowski
Publikováno v:
Opuscula Mathematica, Vol 36, Iss 2, Pp 279-280 (2016)
We correct a small mistake made by the authors of the paper [Hermite-Hadamard type inequalities for Wright-convex functions of several variables, Opuscula Math. 35, no. 3 (2015), 411-419].
Externí odkaz:
https://doaj.org/article/5eb8182390d04846b6034e101672d468
Autor:
Monika Nowicka, Alfred Witkowski
Publikováno v:
Journal of Applied Analysis. 27:65-72
We provide the optimal bounds for the sine and hyperbolic tangent means in terms of various weighted means of the arithmetic and the contraharmonic means.
Autor:
Monika Nowicka, Alfred Witkowski
Publikováno v:
Aequationes mathematicae. 94:817-827
We provide optimal bounds for the tangent and hyperbolic sine means in terms of various weighted means of the arithmetic and geometric means.
Autor:
Alfred Witkowski, Monika Nowicka
Publikováno v:
Journal of Mathematical Inequalities. :23-33
Autor:
Monika Nowicka, Alfred Witkowski
Publikováno v:
Mathematical Inequalities & Applications. :383-392
Autor:
Alfred Witkowski, Monika Nowicka
Publikováno v:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas. 116
We show optimal bounds of the form $$Q_\alpha Q α < M < Q β , where $$\begin{aligned} Q_\alpha (x,y)={\mathsf {A}}(x,y)\frac{{\mathsf {A}}^2(x,y)}{(1-\alpha ){\mathsf {A}}^2(x,y)+\alpha {\mathsf {G}}^2(x,y)} \end{aligned}$$ Q α ( x , y ) = A ( x ,
Autor:
Alfred Witkowski, Monika Nowicka
Publikováno v:
Mathematical Inequalities & Applications. :1319-1325