Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Alfaro, Kevin"'
We present a dataset built for machine learning applications consisting of galaxy photometry, images, spectroscopic redshifts, and structural properties. This dataset comprises 286,401 galaxy images and photometry from the Hyper-Suprime-Cam Survey PD
Externí odkaz:
http://arxiv.org/abs/2410.00271
Generative models producing images have enormous potential to advance discoveries across scientific fields and require metrics capable of quantifying the high dimensional output. We propose that astrophysics data, such as galaxy images, can test gene
Externí odkaz:
http://arxiv.org/abs/2407.07229
In this work, we identify elements of effective machine learning datasets in astronomy and present suggestions for their design and creation. Machine learning has become an increasingly important tool for analyzing and understanding the large-scale f
Externí odkaz:
http://arxiv.org/abs/2211.14401
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Arce Alfaro, Kevin
Publikováno v:
Repositorio UNA
Universidad Nacional de Costa Rica
instacron:UNA
Universidad Nacional de Costa Rica
instacron:UNA
Escuela de Danza
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3056::63f1fefeb642553569a713c20e1168b3
Autor:
Pérez-López, Esteban, Morales-Alfaro, Kevin, Rojas-Hernández, Alfonso, Vargas-Vargas, Anderson
Publikováno v:
Revista Tecnología en Marcha; Vol. 27, Núm. 2 (2014); pág. 51-57
RepositorioTEC
Instituto Tecnológico de Costa Rica
instacron:ITCR
RepositorioTEC
Instituto Tecnológico de Costa Rica
instacron:ITCR
Given the importance of the drug called theophylline, for use in patients with asthma, and given the high consumption of this drug in our country, we chose the product in tablets of 150 mg of theophylline from a pharmaceutical company that produces a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3056::ba94c9ebbd48068fb5b4a5178de48348
https://revistas.tec.ac.cr/index.php/tec_marcha/article/view/1808
https://revistas.tec.ac.cr/index.php/tec_marcha/article/view/1808