Zobrazeno 1 - 10
of 31
pro vyhledávání: '"Alexis Decurninge"'
Publikováno v:
IEEE Access, Vol 12, Pp 157901-157923 (2024)
This work considers the notion of random tensors and reviews some fundamental concepts in statistics when applied to a tensor based data or signal. In several engineering fields such as Communications, Signal Processing, Machine Learning, and Control
Externí odkaz:
https://doaj.org/article/b56e70d0d46342bfa5704d1d8048ad72
This paper considers a general framework for massive random access based on sparse superposition coding. We provide guidelines for the code design and propose the use of constant-weight codes in combination with a dictionary design based on Gabor fra
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5c16ea8ffa330e8148216e319449d118
https://publica.fraunhofer.de/handle/publica/443230
https://publica.fraunhofer.de/handle/publica/443230
Publikováno v:
GLOBECOM 2022 - 2022 IEEE Global Communications Conference.
Publikováno v:
IEEE Wireless Communications Letters. 10:552-556
We introduce a modulation for unsourced massive random access whereby the transmitted symbols are rank-1 tensors constructed from Grassmannian sub-constellations. The use of a low-rank tensor structure, together with tensor decomposition in order to
Publikováno v:
IEEE Transactions on Information Theory. 66:4489-4512
Massive multiple-input multiple-output (MIMO) systems use antenna arrays with a large number of antenna elements to serve many different users simultaneously. The large number of antennas in the system makes, however, the channel state information (C
We consider the joint constellation design problem for the noncoherent multiple-input multiple-output multiple-access channel (MAC). By analyzing the noncoherent maximum-likelihood detection error, we propose novel design criteria so as to minimize t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d3fc509da9d85d8dcc984fd14fccdd8a
https://hal-centralesupelec.archives-ouvertes.fr/hal-03420067
https://hal-centralesupelec.archives-ouvertes.fr/hal-03420067
Publikováno v:
SPAWC
Tensor-based modulation (TBM) has been proposed in the context of unsourced random access for massive uplink communication. In this modulation, transmitters encode data as rank-1 tensors, with factors from a discrete vector constellation. This constr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c9e260a3a380165644fbdef10ebbc048
http://arxiv.org/abs/2111.02128
http://arxiv.org/abs/2111.02128
Publikováno v:
2020 IEEE Information Theory Workshop (ITW)
2020 IEEE Information Theory Workshop (ITW), Apr 2021, Riva del Garda (virtual), Italy. pp.1-5, ⟨10.1109/ITW46852.2021.9457669⟩
ITW
2020 IEEE Information Theory Workshop (ITW), Apr 2021, Riva del Garda (virtual), Italy. pp.1-5, ⟨10.1109/ITW46852.2021.9457669⟩
ITW
International audience; We consider the joint constellation design problem for noncoherent multiple-input multiple-output multiple-access channels. By analyzing the noncoherent maximum-likelihood detection error, we propose novel design criteria so a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9d02a36c456c51b30abb61aa55641840
https://hal-centralesupelec.archives-ouvertes.fr/hal-03420089
https://hal-centralesupelec.archives-ouvertes.fr/hal-03420089
Publikováno v:
ACSSC
We introduce a modulation for unsourced massive random access whereby the transmitted symbols are rank-1 tensors constructed from Grassmannian sub-constellations. The use of a low-rank tensor structure, together with tensor decomposition in order to
Channel charting is a data-driven baseband processing technique consisting in applying self-supervised machine learning techniques to channel state information (CSI), with the objective of reducing the dimension of the data and extracting the fundame
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ed5847a179de9ade0d2eb32e0efd0ff5
http://arxiv.org/abs/2005.12242
http://arxiv.org/abs/2005.12242