Zobrazeno 1 - 10
of 59
pro vyhledávání: '"Alexia Briassouli"'
Autor:
Petros Alvanitopoulos, Sotiris Diplaris, Beatrice de Gelder, Alexander Shvets, Maurice Benayoun, Panagiota Koulali, Ayman Moghnieh, Yash Shekhawat, Christos Stentoumis, Tyson Hosmer, Refik Anadol, Marta Borreguero, Alejandro Martin, Piera Sciama, Kostas Avgerinakis, Panagiotis Petrantonakis, Alexia Briassouli, Simon Mille, Anastasios Tellios, Luis Fraguada, Holger Sprengel, Ilias Kalisperakis, Nestor Cabanas, Spiridon Nikolopoulos, Stavros Skouras, Verena Vogler, Despoina Zavraka, Jens Piesk, Lazaros Grammatikopoulos, Leo Wanner, Tobias Klein, Stefanos Vrochidis, Ioannis Kompatsiaris
Publikováno v:
Digital Presentation and Preservation of Cultural and Scientific Heritage, Vol 9 (2019)
MindSpaces provides solutions for creating functionally and emotionally appealing architectural designs in urban spaces. Social media services, physiological sensing devices and video cameras provide data from sensing environments. State-of-the-Art t
Externí odkaz:
https://doaj.org/article/68cbaa8afd2542f692f0a3b394f250a6
Publikováno v:
EURASIP Journal on Image and Video Processing, Vol 2009 (2009)
The widespread use of digital multimedia in applications, such as security, surveillance, and the semantic web, has made the automated characterization of human activity necessary. In this work, a method for the characterization of multiple human act
Externí odkaz:
https://doaj.org/article/ade99408943a4b9587aa2d3b9bedd27d
Publikováno v:
EURASIP Journal on Image and Video Processing, Vol 2008 (2008)
The automated analysis of activity in digital multimedia, and especially video, is gaining more and more importance due to the evolution of higher-level video processing systems and the development of relevant applications such as surveillance and sp
Externí odkaz:
https://doaj.org/article/3d2a1e53713742a3b6558cd9a7c37695
Autor:
Sam F Sweere, Ivan Valtchanov, Maggie Lieu, Antonia Vojtekova, Eva Verdugo, Maria Santos-Lleo, Florian Pacaud, Alexia Briassouli, Daniel Cámpora Pérez
Publikováno v:
Monthly Notices of the Royal Astronomical Society, 517(3), 4054-4069. Oxford University Press
The field of artificial intelligence based image enhancement has been rapidly evolving over the last few years and is able to produce impressive results on non-astronomical images. In this work, we present the first application of Machine Learning ba
Publikováno v:
2022 IEEE International Conference on Image Processing (ICIP).
Autor:
Felix Rustemeyer, Julia Barrott, Matthew Fielding, Adam Wickenden, Gustaf Hugelius, Alexia Briassouli
Publikováno v:
IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium, 3838-3841
STARTPAGE=3838;ENDPAGE=3841;TITLE=IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium
STARTPAGE=3838;ENDPAGE=3841;TITLE=IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium
This paper presents the novel use of convolutional neural network (CNN)-based machine learning models for remotely detecting and monitoring retrogressive thaw slumps (RTS) in high latitude northern permafrost using open-source Sentinel-2 satellite da
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9b7637c72ce989a2d3b347b9a5b9f29a
https://doi.org/10.1109/igarss46834.2022.9884869
https://doi.org/10.1109/igarss46834.2022.9884869
Autor:
Alberto Traverso, Mr. Suraj Pai, Mr Ibrahim Hadžić, Mr. Chinmay Rao, Richard Canters, Andre Dekker, Alexia Briassouli, Henrique Hortal Quesada, Jonas Teuwen
Publikováno v:
Physica Medica. 104:S126
Autor:
Laurenz Ohnemuller, Alexia Briassouli
Publikováno v:
2021 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), 172-176
STARTPAGE=172;ENDPAGE=176;TITLE=2021 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor)
STARTPAGE=172;ENDPAGE=176;TITLE=2021 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor)
Detecting plants in images is central in precision agriculture, but can be challenging due to their small size, similarities in appearance, varying lighting and environmental conditions. Moreover, computational capacity in real-world settings may be
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::baf0ba75cdb2657e3b552966f24e9c10
https://cris.maastrichtuniversity.nl/en/publications/f62c0d00-056b-46cf-a291-9a65c287910b
https://cris.maastrichtuniversity.nl/en/publications/f62c0d00-056b-46cf-a291-9a65c287910b
Autor:
Vagia Kaltsa, Alexia Briassouli, Michael G. Strintzis, Ioannis Kompatsiaris, Konstantinos Avgerinakis
Publikováno v:
Computers in Industry
Computers in Industry, 98, 1-13. Elsevier
Computers in Industry, 98, 1-13. Elsevier
This work focuses on detecting and localizing a wide range of dynamic textures in video sequences captured by surveillance cameras. Their reliable and robust analysis constitutes a challenging task for traditional computer vision methods, due to barr
Publikováno v:
Computer Vision and Image Understanding, 160, 73-86. Academic Press Inc.
Human activity detection from video that is recorded continuously over time has been gaining increasing attention due to its use in applications like security monitoring, smart homes and assisted living setups. The analysis of continuous videos for t