Zobrazeno 1 - 10
of 20
pro vyhledávání: '"Alexey Talambutsa"'
Autor:
Victor Antonovich Sadovnichii, Alexander A. Razborov, Lev D. Beklemishev, Igor Geront'evich Lysenok, V. S. Guba, Sergey Novikov, Alexey Talambutsa, L. N. Shevrin, Victor Matveevich Buchstaber, Yu. S. Osipov, Yu. L. Ershov, V. S. Atabekyan, Valerii Vasil'evich Kozlov, Aleksei L'vovich Semenov, Sergey Goncharov, Dmitry Treschev, Mati Pentus, Vladimir V. Podolskii
Publikováno v:
Russian Mathematical Surveys. 76:177-181
Autor:
Varuzhan Sergeevich Atabekyan, Yurii S Osipov, Igor Geront'evich Lysenok, Alexey Talambutsa, Lev D. Beklemishev, Sergey Goncharov, Dmitrii Valer'evich Treschev, Lev Naumovich Shevrin, Алексей Львович Семeнов, Mati Pentus, Victor Antonovich Sadovnichii, Victor Matveevich Buchstaber, Valery V. Kozlov, Sergei Petrovich Novikov, Alexander A. Razborov, Yurii Leonidovich Ershov, Игорь Геронтьевич Лысeнок, Vladimir V. Podolskii, Aleksei L'vovich Semenov, Victor Guba
Publikováno v:
Uspekhi Matematicheskikh Nauk. 76:191-194
Autor:
Alexey Talambutsa
Publikováno v:
Computer Science – Theory and Applications ISBN: 9783030500252
CSR
CSR
We prove that for any rational number \(\alpha >1\) there exists a semi-Thue system with derivational complexity function belonging to the asymptotic class \(\varTheta (n^{\alpha })\). In particular, we answer a question of Y. Kobayashi, whether ther
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::35473f9a09d34f7a70b1c4efe453d431
https://doi.org/10.1007/978-3-030-50026-9_28
https://doi.org/10.1007/978-3-030-50026-9_28
Autor:
Alexey Talambutsa, Alexander Kolpakov
We define a large class of abstract Coxeter groups, that we call $\infty$--spanned, and for which the word growth rate and the geodesic growth rate appear to be Perron numbers. This class contains a fair amount of Coxeter groups acting on hyperbolic
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5aba5c0b421450e2e85968821b06b02c
http://arxiv.org/abs/1912.05608
http://arxiv.org/abs/1912.05608
Autor:
Alexey Talambutsa, Michelle Bucher
Publikováno v:
Groups, Geometry, and Dynamics. 11:189-209
We prove that for any prime $p\geq 3$ the minimal exponential growth rate of the Baumslag-Solitar group $BS(1,p)$ and the lamplighter group $\mathcal{L}_p=(\mathbb{Z}/p\mathbb{Z})\wr \mathbb{Z}$ are equal. We also show that for $p=2$ this claim is no
Autor:
Michelle Bucher, Alexey Talambutsa
Publikováno v:
Israel Journal of Mathematics. 212:521-546
We prove that there is a gap between $\sqrt{2}$ and $(1+\sqrt{5})/2$ for the exponential growth rate of free products $G=A*B$ not isomorphic to the infinite dihedral group. For amalgamated products $G=A*_C B$ with $([A:C]-1)([B:C]-1)\geq2$, we show t
Autor:
Alexey Talambutsa, Alexander Kolpakov
Publikováno v:
Discrete Mathematics. 343:111763
We prove that for any infinite right-angled Coxeter or Artin group, its spherical and geodesic growth rates (with respect to the standard generating set) either take values in the set of Perron numbers, or equal 1. Also, we compute the average number
Autor:
Alexey Talambutsa
Publikováno v:
Proceedings of the Steklov Institute of Mathematics. 274:289-302
We consider free products of two finite cyclic groups of orders 2 and n, where n is a prime power. For any such group ℤ2 * ℤn = 〈a, b | a2 = bn = 1〉, we prove that the minimal growth rate αn is attained on the set of generators {a, b} and ex
Autor:
Alexey Talambutsa
Publikováno v:
Mathematical Notes. 88:144-148
Publikováno v:
Matematicheskie Zametki. 81:163-173