Zobrazeno 1 - 10
of 28
pro vyhledávání: '"Alexey Kokotov"'
Autor:
Victor Kalvin, Alexey Kokotov
Publikováno v:
Canadian Mathematical Bulletin
We find an explicit expression for the zeta-regularized determinant of (the Friedrichs extension) of the Laplacian on a compact Riemann surface of genus one with conformal metric of curvature $1$ having a single conical singularity of angle $4\pi$.
Autor:
Alexey Kokotov
Publikováno v:
Mathematical Research Letters
Let $X$ be a compact Riemann surface of genus $g\geq 2$ equipped with flat conical metric $|\Omega|$, where $\Omega$ be a holomorphic quadratic differential on $X$ with $4g-4$ simple zeroes. Let $K$ be the canonical line bundle on $X$. Introduce the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1a2a4c237d30c99c4390649d4fc01d63
http://arxiv.org/abs/2001.06710
http://arxiv.org/abs/2001.06710
Autor:
Victor Kalvin, Alexey Kokotov
Publikováno v:
International Mathematics Research Notices
Autor:
Alexey Kokotov, Kelvin Lagota
Publikováno v:
Canadian Journal of Mathematics
Using Roelcke formula for the Green function, we explicitly construct a basis in the kernel of the adjoint Laplacian on a compact polyhedral surface $X$ and compute the $S$-matrix of $X$ at the zero value of the spectral parameter. We apply these res
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a7a8a6538eccbbd8b144cabcfc4765ee
http://arxiv.org/abs/1902.03232
http://arxiv.org/abs/1902.03232
Autor:
Alexey Kokotov, Luc Hillairet
Publikováno v:
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society, American Mathematical Society, 2017, 145 (9), pp.3915-3928. ⟨10.1090/proc/13494⟩
Proceedings of the American Mathematical Society, American Mathematical Society, 2017, 145 (9), pp.3915-3928. ⟨10.1090/proc/13494⟩
We study comparison formulas for ζ \zeta -regularized determinants of self-adjoint extensions of the Laplacian on flat conical surfaces of genus g ≥ 2 g\geq 2 . The cases of trivial and non-trivial holonomy of the metric turn out to differ signifi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a5e4315c784807fc4aeca9d0663c83bc
https://hal.archives-ouvertes.fr/hal-03470357
https://hal.archives-ouvertes.fr/hal-03470357
Autor:
Alexey Kokotov
Publikováno v:
Proceedings of the American Mathematical Society. 141:725-735
An explicit formula for the determinant of the Laplacian on a compact polyhedral surface of genus g > 1 g>1 is found. This formula generalizes previously known results for flat surfaces with trivial holonomy and compact polyhedral tori.
Autor:
Alexey Kokotov
Publikováno v:
Transactions of the American Mathematical Society
Let X \mathcal {X} be a translation surface of genus g > 1 g>1 with 2 g − 2 2g-2 conical points of angle 4 π 4\pi and let γ \gamma , γ ′ \gamma ’ be two homologous saddle connections of length s s joining two conical points of X \mathcal {X}
Autor:
Luc Hillairet, Alexey Kokotov
Publikováno v:
Journal of Geometric Analysis
Journal of Geometric Analysis, 2013, 23 (3), pp.1498--1529. ⟨10.1007/s12220-012-9295-3⟩
Journal of Geometric Analysis, 2013, 23 (3), pp.1498--1529. ⟨10.1007/s12220-012-9295-3⟩
We use Krein formula and the S-matrix formalism to give formulas for the zeta-regularized determinant of non-Friedrichs extensions of the Laplacian on Euclidean surfaces with Conical Singularities. This formula involves S(0) and we show that the latt
Publikováno v:
Mathematical Research Letters
Mathematical Research Letters, 2012, 19 (6), pp.1297-1308. ⟨10.4310/MRL.2012.v19.n6.a10⟩
Mathematical Research Letters, 2012, 19 (6), pp.1297-1308. ⟨10.4310/MRL.2012.v19.n6.a10⟩
Let X be a compact Riemannian manifold of dimension two or three and let P be a point of X. We derive comparison formulas relating the zeta-regularized determinant of an arbitrary self-adjoint extension of (symmetric) Laplace operator with domain, co
Publikováno v:
Advances in Mathematics
The isomonodromic tau function of the Fuchsian differential equations associated to Frobenius structures on Hurwitz spaces can be viewed as a section of a line bundle on the space of admissible covers. We study the asymptotic behavior of the tau func