Zobrazeno 1 - 10
of 41
pro vyhledávání: '"Alexei Ilyin"'
Autor:
Ari Laptev, Alexei Ilyin
Publikováno v:
Russian Mathematical Surveys. 75:779-781
We study the global attractors for the damped 3D Euler–Bardina equations with the regularization parameter \begin{document}$ \alpha>0 $\end{document} and Ekman damping coefficient \begin{document}$ \gamma>0 $\end{document} endowed with periodic bou
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::89a7e0fd5b7e0e65ab3291daa7033224
Publikováno v:
Physica D: Nonlinear Phenomena. 432:133156
The dependence of the fractal dimension of global attractors for the damped 3D Euler--Bardina equations on the regularization parameter $\alpha>0$ and Ekman damping coefficient $\gamma>0$ is studied. We present explicit upper bounds for this dimensio
We prove on the sphere S 2 and on the torus T 2 the Lieb–Thirring inequalities with improved constants for orthonormal families of scalar and vector functions.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2580efb37edeaf7eb32cbbd331bb958e
http://hdl.handle.net/10044/1/85383
http://hdl.handle.net/10044/1/85383
Publikováno v:
Physica D: Nonlinear Phenomena. :171-179
A hyperbolic relaxation of the classical Navier–Stokes problem in 2D bounded domain with Dirichlet boundary conditions is considered. It is proved that this relaxed problem possesses a global strong solution if the relaxation parameter is small and
Autor:
Alexei Ilyin
Publikováno v:
Keldysh Institute Preprints. :1-18
Autor:
I. D. Rodionov, Alexei Ilyin, Alexander P. Kalinin, A. N. Vinogradov, V.V. Egorov, I.P. Rodionova, A.I. Rodionov, D.S. Demidova
Publikováno v:
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 15:21-28
Autor:
Alexei Ilyin, Vladimir V. Chepyzhov
Publikováno v:
Mathematical Notes. 101:746-750
Publikováno v:
Discrete & Continuous Dynamical Systems - B. 22:1835-1855
We consider the damped and driven two-dimensional Euler equations in the plane with weak solutions having finite energy and enstrophy. We show that these (possibly non-unique) solutions satisfy the energy and enstrophy equality. It is shown that this