Zobrazeno 1 - 10
of 195
pro vyhledávání: '"Alexeeva, N."'
Two different methods are used to study the existence and stability of the (1+1)-dimensional $\Phi^4$ oscillon. The variational technique approximates it by a periodic function with a set of adiabatically changing parameters. An alternative approach
Externí odkaz:
http://arxiv.org/abs/2404.01028
Autor:
Barashenkov, I. V., Alexeeva, N. V.
The variational method employing the amplitude and width as collective coordinates of the Klein-Gordon oscillon leads to a dynamical system with unstable periodic orbits that blow up when perturbed. We propose a multiscale variational approach free f
Externí odkaz:
http://arxiv.org/abs/2310.20345
Oscillons are localised long-lived pulsating states in the three-dimensional $\phi^4$ theory. We gain insight into the spatio-temporal structure and bifurcation of the oscillons by studying time-periodic solutions in a ball of a finite radius. A sequ
Externí odkaz:
http://arxiv.org/abs/2304.05911
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Although the spinor field in (1+1) dimensions has the right structure to model a dispersive bimodal system with gain and loss, the plain addition of gain to one component of the field and loss to the other one results in an unstable dispersion relati
Externí odkaz:
http://arxiv.org/abs/1812.02423
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We consider a PT-symmetric ladder-shaped optical array consisting of a chain of waveguides with gain coupled to a parallel chain of waveguides with loss. All waveguides have the focusing Kerr nonlinearity. The array supports two co-existing solitons,
Externí odkaz:
http://arxiv.org/abs/1710.06060
Publikováno v:
Lithuanian Journal of Physics. 2023, Vol. 63 Issue 3, p148-154. 7p.
Autor:
Olivier, C P, Alexeeva, N V
The term "direct scattering study" refers to the calculation and analysis of the discrete eigenvalues of the associated Zakharov-Shabat (ZS) eigenvalue problem. The direct scattering study was applied to time-dependent oscillating solitons that arise
Externí odkaz:
http://arxiv.org/abs/1312.7655
Publikováno v:
Physical Review A 87, 033819 (2013)
We consider parity-time ($\mathcal{PT}$) symmetric arrays formed by $N$ optical waveguides with gain and $N$ waveguides with loss. When the gain-loss coefficient exceeds a critical value $\gamma_c$, the $\mathcal{PT}$-symmetry becomes spontaneously b
Externí odkaz:
http://arxiv.org/abs/1311.4123