Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Alexandrov, Stepan"'
Autor:
Alexandrov, Stepan
In this note, we improve Nikulin's inequality in the case of right-angled hyperbolic polyhedra. The new inequality allows to give much shorter proofs of the known dimension bounds. We also improve Nonaka's lower bound on the number of ideal vertices
Externí odkaz:
http://arxiv.org/abs/2303.09533
Autor:
Alexandrov, Stepan
In this paper we study $\times_0$-products of Lann\'er diagrams. We prove that every $\times_0$-product of at least four Lann\'er diagrams with at least one diagram of order $\ge 3$ is superhyperbolic. As a corollary, we obtain that known classificat
Externí odkaz:
http://arxiv.org/abs/2203.07248
In this paper we obtain new upper bounds on volumes of right-angled polyhedra in hyperbolic space $\mathbb{H}^3$ in three different cases: for ideal polyhedra with all vertices on the ideal hyperbolic boundary, for compact polytopes with only finite
Externí odkaz:
http://arxiv.org/abs/2111.08789
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Alexandrov, Stepan
Publikováno v:
Transactions of the American Mathematical Society; Oct2023, Vol. 376 Issue 10, p6989-7012, 24p