Zobrazeno 1 - 10
of 14
pro vyhledávání: '"Alexandros Eskenazis"'
Publikováno v:
Discrete Analysis (2023)
Low-degree learning and the metric entropy of polynomials, Discrete Analysis 2023:17, 23 pp. This paper is a follow-up to a paper by the first two authors on the general problem of designing algorithms that can efficiently learn functions defined on
Externí odkaz:
https://doaj.org/article/bb0396089e3a4a9cbbbee2fca36f2803
Autor:
Alexandros Eskenazis, Paata Ivanisvili
Publikováno v:
Israel Journal of Mathematics. 253:469-485
Publikováno v:
Bulletin of the London Mathematical Society.
Autor:
Alexandros Eskenazis
Publikováno v:
Canadian Mathematical Bulletin. 64:282-291
We prove an extension of Pisier’s inequality (1986) with a dimension-independent constant for vector-valued functions whose target spaces satisfy a relaxation of the UMD property.
Autor:
Paata Ivanisvili, Alexandros Eskenazis
Publikováno v:
Probability Theory and Related Fields. 178:235-287
Let $$(X,\Vert \cdot \Vert _X)$$ be a Banach space. The purpose of this article is to systematically investigate dimension independent properties of vector valued functions $$f:\{-1,1\}^n\rightarrow X$$ on the Hamming cube whose spectrum is bounded a
Publikováno v:
Inventiones mathematicae. 217:833-886
We prove that not every metric space embeds coarsely into an Alexandrov space of nonpositive curvature. This answers a question of Gromov (1993) and is in contrast to the fact that any metric space embeds coarsely into an Alexandrov space of nonnegat
Autor:
Alexandros Eskenazis, Evita Nestoridi
Publikováno v:
Ann. Inst. H. Poincaré Probab. Statist. 56, no. 4 (2020), 2621-2639
Nous etudions le temps de melange de l’urne de Bernoulli–Laplace de parametres $(n,k)$, ou $k\in\{0,1,\ldots,n\}$. On considere deux urnes, chacune contenant $n$ boules, telles que combinees elles ont exactement $n$ boules rouges et $n$ boules bl
Let $\mathscr{C}_n=\{-1,1\}^n$ be the discrete hypercube equipped with the uniform probability measure $\sigma_n$. Talagrand's influence inequality (1994) asserts that there exists $C\in(0,\infty)$ such that for every $n\in\mathbb{N}$, every function
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9bf7d2467a9774a048f0378dbbd7e752
Autor:
Alexandros Eskenazis, Paata Ivanisvili
Publikováno v:
Journal of Approximation Theory. 253:105377
We obtain the following dimension independent Bernstein–Markov inequality in Gauss space: for each 1 ≤ p ∞ there exists a constant C p > 0 such that for any k ≥ 1 and all polynomials P on R k we have ‖ ∇ P ‖ L p ( R k , d γ k ) ≤ C p
Publikováno v:
Ann. Probab. 46, no. 5 (2018), 2908-2945
A symmetric random variable is called a Gaussian mixture if it has the same distribution as the product of two independent random variables, one being positive and the other a standard Gaussian random variable. Examples of Gaussian mixtures include r