Zobrazeno 1 - 3
of 3
pro vyhledávání: '"Alexandre Tiard"'
Autor:
Mingqi Han, Eric A. Bushong, Mayuko Segawa, Alexandre Tiard, Alex Wong, Morgan R. Brady, Milica Momcilovic, Dane M. Wolf, Ralph Zhang, Anton Petcherski, Matthew Madany, Shili Xu, Jason T. Lee, Masha V. Poyurovsky, Kellen Olszewski, Travis Holloway, Adrian Gomez, Maie St. John, Steven M. Dubinett, Carla M. Koehler, Orian S. Shirihai, Linsey Stiles, Aaron Lisberg, Stefano Soatto, Saman Sadeghi, Mark H. Ellisman, David B. Shackelford
Publikováno v:
Nature, vol 615, iss 7953
Acknowledgements: We thank C. Zamilpa, D. Abeydeera and J. Collins, at UCLA’s Crump Imaging Technology Center, for assistance with PET–CT imaging of the mice. We thank the Translational Pathology Core Laboratory at UCLA’s DGSOM for assistance w
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::25ba0e060fdb5e0999dce8457473be4c
Autor:
Alex Wong, Allison Chen, Yangchao Wu, Safa Cicek, Alexandre Tiard, Byung-Woo Hong, Stefano Soatto
Publikováno v:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries ISBN: 9783031089985
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::21e640a7b41919ea5503b36075a26a53
https://doi.org/10.1007/978-3-031-08999-2_6
https://doi.org/10.1007/978-3-031-08999-2_6
Autor:
Da Kuang, Wei Zhu, Devin Dahlberg, Victoria Chayes, Dominique Zosso, Alexandre Tiard, Stephanie Sanchez, Andrea L. Bertozzi, Stanley Osher
Publikováno v:
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, vol 55, iss 5
Zhu, W; Chayes, V; Tiard, A; Sanchez, S; Dahlberg, D; Bertozzi, AL; et al.(2017). Unsupervised Classification in Hyperspectral Imagery with Nonlocal Total Variation and Primal-Dual Hybrid Gradient Algorithm. UCLA: Retrieved from: http://www.escholarship.org/uc/item/8pf426v7
IEEE Transactions on Geoscience and Remote Sensing, vol 55, iss 5
Zhu, W; Chayes, V; Tiard, A; Sanchez, S; Dahlberg, D; Bertozzi, AL; et al.(2017). Unsupervised Classification in Hyperspectral Imagery with Nonlocal Total Variation and Primal-Dual Hybrid Gradient Algorithm. UCLA: Retrieved from: http://www.escholarship.org/uc/item/8pf426v7
IEEE Transactions on Geoscience and Remote Sensing, vol 55, iss 5
In this paper, a graph-based nonlocal total variation method (NLTV) is proposed for unsupervised classification of hyperspectral images (HSI). The variational problem is solved by the primal-dual hybrid gradient (PDHG) algorithm. By squaring the labe