Zobrazeno 1 - 10
of 14
pro vyhledávání: '"Alexandre Strube"'
Autor:
Yannick Berens, Torsten Hoefler, Alexandru Calotoiu, Felix Wolf, Alexandre Strube, Sergei Shudler
Publikováno v:
IEEE Transactions on Parallel and Distributed Systems. 30:1768-1785
Many libraries in the HPC field use sophisticated algorithms with clear theoretical scalability expectations. However, hardware constraints or programming bugs may sometimes render these expectations inaccurate or even plainly wrong. While algorithm
Autor:
Alexandre Strube, Morris Riedel, Gabriele Cavallaro, Jenia Jitsev, Matthias Book, Rocco Sedona
Publikováno v:
IGARSS
IEEE 1058-1061 (2020). doi:10.1109/IGARSS39084.2020.9324237
2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020, Online event, Hawaii, 2020-09-26-2020-10-02
IEEE 1058-1061 (2020). doi:10.1109/IGARSS39084.2020.9324237
2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020, Online event, Hawaii, 2020-09-26-2020-10-02
Similarly to other scientific domains, Deep Learning (DL) holds great promises to fulfil the challenging needs of Remote Sensing (RS) applications. However, the increase in volume, variety and complexity of acquisitions that are carried out on a dail
Autor:
Alexandre Strube, Jenia Jitsev, Jon Atli Benediktsson, Gabriele Cavallaro, Rocco Sedona, Morris Riedel
Publikováno v:
Remote Sensing
Volume 11
Issue 24
Pages: 3056
Remote sensing 11(24), 3056-(2019). doi:10.3390/rs11243056
Volume 11
Issue 24
Pages: 3056
Remote sensing 11(24), 3056-(2019). doi:10.3390/rs11243056
High-Performance Computing (HPC) has recently been attracting more attention in remote sensing applications due to the challenges posed by the increased amount of open data that are produced daily by Earth Observation (EO) programs. The unique parall
Autor:
Sebastian Reiter, Arne Nägel, Gabriel Wittum, Alexandre Strube, Andreas Vogel, Alexandru Calotoiu, Felix Wolf
Publikováno v:
Lecture Notes in Computational Science and Engineering ISBN: 9783319405261
Software for Exascale Computing
Software for Exascale Computing
Many scientific research questions such as the drug diffusion through the upper part of the human skin are formulated in terms of partial differential equations and their solution is numerically addressed using grid based finite element methods. For
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::ebad7f7df1f6cfe4cd98ab927252fa8a
https://doi.org/10.1007/978-3-319-40528-5_21
https://doi.org/10.1007/978-3-319-40528-5_21
Autor:
Christian Iwainsky, Torsten Hoefler, Andreas Vogel, Grzegorz Kwasniewski, Felix Wolf, Alexandru Calotoiu, Alexandre Strube, Christian Bischof, Bernd Mohr, Sergei Shudler, Gabriel Wittum
Publikováno v:
Lecture Notes in Computational Science and Engineering ISBN: 9783319405261
Software for Exascale Computing
Software for Exascale Computing
Many existing applications suffer from inherent scalability limitations that will prevent them from running at exascale. Current tuning practices, which rely on diagnostic experiments, have drawbacks because (i) they detect scalability problems relat
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::453913a867078ba4a598d063d5b36ebd
https://doi.org/10.1007/978-3-319-40528-5_20
https://doi.org/10.1007/978-3-319-40528-5_20
Publikováno v:
ICS
Many libraries in the HPC field encapsulate sophisticated algorithms with clear theoretical scalability expectations. However, hardware constraints or programming bugs may sometimes render these expectations inaccurate or even plainly wrong. While al
Autor:
Michael Knobloch, Alexandru Calotoiu, Christian Iwainsky, Christian Bischof, Alexandre Strube, Sergei Shudler, Felix Wolf
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783662480953
Euro-Par
Euro-Par
Exascale systems will exhibit much higher degrees of parallelism both in terms of the number of nodes and the number of cores per node. OpenMP is a widely used standard for exploiting parallelism on the level of individual nodes. Although successfull
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::2f68cc8f0ca579654cb8050aa8aa1e56
https://doi.org/10.1007/978-3-662-48096-0_35
https://doi.org/10.1007/978-3-662-48096-0_35
Autor:
Felix Wolf, Alexandru Calotoiu, Torsten Hoefler, Christian Bischof, Andreas Vogel, Christian Iwainsky, Bernd Mohr, Gabriel Wittum, Alexandre Strube
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783319143125
Euro-Par Workshops (2)
Euro-Par Workshops (2)
Many parallel applications suffer from latent performance limitations that may prevent them from scaling to larger machine sizes. Often, such scalability bugs manifest themselves only when an attempt to scale the code is actually being made—a point
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::07835b3e4b07b07efe79a29b78a852ec
https://doi.org/10.1007/978-3-319-14313-2_50
https://doi.org/10.1007/978-3-319-14313-2_50
Publikováno v:
Berlin : Springer 200 S (2013). doi:10.1007/978-3-642-37349-7_8
Tools for High Performance Computing 2012
Tools for High Performance Computing 20126th International Parallel Tools Workshop, Stuttgart, Germany, 2012-09-25-2012-09-28
Tools for High Performance Computing 2012 ISBN: 9783642373480
Tools for High Performance Computing 2012
Tools for High Performance Computing 20126th International Parallel Tools Workshop, Stuttgart, Germany, 2012-09-25-2012-09-28
Tools for High Performance Computing 2012 ISBN: 9783642373480
Scalasca is a performance analysis tool, which parses the trace of an application run for certain patterns that indicate performance inefficiencies. In this paper, we present recently developed new features in Scalasaca. In particular, we describe tw
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6c1166910f688a2e6a72a17e43bfcf3d
https://juser.fz-juelich.de/record/128962
https://juser.fz-juelich.de/record/128962
Autor:
Zoltán Szebenyi, Markus Geimer, Alexandre Strube, Brian J. N. Wylie, Felix Wolf, Pavel Saviankou
Publikováno v:
Applied Parallel and Scientific Computing ISBN: 9783642281440
PARA (2)
PARA (2)
Scalasca is an open-source toolset that can be used to analyze the performance behavior of parallel applications and to identify opportunities for optimization. Target applications include simulation codes from science and engineering based on the pa
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::be41306ec0fb5488bc8be290ac35408f