Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Alexandre Paiva Barreto"'
Publikováno v:
Revista Matemática Iberoamericana.
Publikováno v:
Proceedings of the Royal Society of Edinburgh: Section A Mathematics. 152:1081-1088
We prove that there are no regular algebraic hypersurfaces with non-zero constant mean curvature in the Euclidean space $\mathbb {R}^{n+1},\,\;n\geq 2,$ defined by polynomials of odd degree. Also we prove that the hyperspheres and the round cylinders
Publikováno v:
Topology and its Applications. 197:10-20
We present a homological version of the Inverse Mapping Theorem for open and discrete continuous maps between oriented topological manifolds, with assumptions on the degree of the maps, but without any assumption on differentiability. We prove that t
Autor:
Alexandre Paiva Barreto
Publikováno v:
Pacific Journal of Mathematics. 268:1-21
This work is devoted to the study of deformations of hyperbolic cone structures under the assumption that the length of the singularity remains uniformly bounded over the deformation. Let.Mi; pi/ be a sequence of pointed hyperbolic cone manifolds wit
Publikováno v:
Hiroshima Math. J. 46, no. 3 (2016), 255-270
In this article we classify the free involutions of every torus semi-bundle Sol 3-manifold. Moreover, we classify all the triples $M, \tau, \mathbf{R}^n$, where $M$ is as above, $\tau$ is a free involution on $M$, and $n$ is a positive integer, for w
Autor:
Alexandre Paiva Barreto
Publikováno v:
Kyoto J. Math. 56, no. 3 (2016), 539-557
This article focuses on deformations of hyperbolic cone structures under the assumption that the length of the singularity remains uniformly bounded during the deformation. Let $M$ be a closed, orientable, and irreducible $3$ -manifold, and let $\Sig
We prove that the hypotheses in the Pigola–Rigoli–Setti version of the Omori–Yau maximum principle are logically equivalent to the assumption that the manifold carries a${C}^{2} $proper function whose gradient and Hessian (Laplacian) are bounde
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9cec76a1713f3a47da62b308b8ed968b
http://arxiv.org/abs/1301.0531
http://arxiv.org/abs/1301.0531
Autor:
Felipe de Aguilar Franco
Publikováno v:
Biblioteca Digital de Teses e Dissertações da USP
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
We study relations between special elliptic isometries in the complex hyperbolic plane. A special elliptic isometry can be seen as a rotation around a fixed axis (a complex geodesic). Such an isometry is determined by specifying a nonisotropic point
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::538bab029d1e95d0d8bc32ca16ea2223
https://doi.org/10.11606/t.55.2019.tde-22032019-081425
https://doi.org/10.11606/t.55.2019.tde-22032019-081425
Autor:
Omar Chavez Cussy
Publikováno v:
Biblioteca Digital de Teses e Dissertações da USP
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
We prove a couple of conjectures raised by J. J. Seidel in On the volume of a hyperbolic simplex, Stud. Sci. Math. Hung. (21, 243249, 1986). These conjectures concern the volume of ideal hyperbolic tetrahedra in hyperbolic 3-space and are related to
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::29a98f0eed639a84fea5846b6fa2c579
https://doi.org/10.11606/d.55.2017.tde-11092017-161403
https://doi.org/10.11606/d.55.2017.tde-11092017-161403