Zobrazeno 1 - 10
of 44
pro vyhledávání: '"Alexandre G. Patriota"'
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::813ed562d4e91754776d3cbabd290686
Autor:
Alexandre G. Patriota
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
Autor:
Alexandre G. Patriota, David R. Bickel
Publikováno v:
Bernoulli 25, no. 1 (2019), 47-74
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Frequentist methods, without the coherence guarantees of fully Bayesian methods, are known to yield self-contradictory inferences in certain settings. The framework introduced in this paper provides a simple adjustment to $p$ values and confidence se
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::14bd2bb7053335f91084208c45560b24
https://projecteuclid.org/euclid.bj/1544605238
https://projecteuclid.org/euclid.bj/1544605238
Autor:
Alexandre G. Patriota
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
Feng et al. revealed that the usual mean value theorem (MVT) should not be applied directly to a vector-valued function (e.g., the score function or a general estimating function under a multiparam...
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d5f1ab5d865357baa4e4432e140cf2d5
Autor:
Alexandre G. Patriota
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
Bayesian and classical statistical approaches are based on different types of logical principles. In order to avoid mistaken inferences and misguided interpretations, the practitioner must respect the inference rules embedded into each statistical me
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Braz. J. Probab. Stat. 32, no. 1 (2018), 44-68
Universidade de São Paulo (USP)
instacron:USP
Braz. J. Probab. Stat. 32, no. 1 (2018), 44-68
The problem of reducing the bias of maximum likelihood estimator in a general multivariate elliptical regression model is considered. The model is very flexible and allows the mean vector and the dispersion matrix to have parameters in common. Many f
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8d71ff5cb27eadc8595f9aa33344f036
Publikováno v:
Theoretical and Applied Aspects of Systems Biology ISBN: 9783319749730
Clustering is an important tool in biological data investigation. For example, in neuroscience, one major hypothesis is that the presence or not of a disorder can be explained by the differences in how brain’s regions of interest cluster. In molecu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::8faa0ec9f4b3d21482c021b5e398d826
https://doi.org/10.1007/978-3-319-74974-7_6
https://doi.org/10.1007/978-3-319-74974-7_6
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
This paper investigates improved testing inferences under a general multivariate elliptical regression model. The model is very flexible in terms of the specification of the mean vector and the dispersion matrix, and of the choice of the error distri
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b725473d07af12af92a201efd5c14c3d
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
An important and yet unsolved problem in unsupervised data clustering is how to determine the number of clusters. The proposed slope statistic is a non-parametric and data driven approach for estimating the number of clusters in a dataset. This techn