Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Alexandra Soberon"'
Publikováno v:
Econometric Reviews. 41:321-358
Multidimensional panel datasets are routinely employed to identify marginal effects in empirical research. Fixed effects estimators are typically used to deal with potential correlation between uno...
Publikováno v:
The Econometrics Journal, Volume 25, Issue 1, January 2022, Pages 114-133
UCrea Repositorio Abierto de la Universidad de Cantabria
Universidad de Cantabria (UC)
UCrea Repositorio Abierto de la Universidad de Cantabria
Universidad de Cantabria (UC)
In this paper, we consider efficiency improvement in a nonparametric panel data model with cross-sectional dependence. A generalised least squares (GLS)-type estimator is proposed by taking into account this dependence structure. Parameterising the c
Publikováno v:
Econometric Reviews, 2020 39:3, 277-298
UCrea Repositorio Abierto de la Universidad de Cantabria
Universidad de Cantabria (UC)
UCrea Repositorio Abierto de la Universidad de Cantabria
Universidad de Cantabria (UC)
This article provides several tests for skewness and kurtosis for the error terms in a one-way fixed-effects varying coefficient panel data model. To obtain these tests, estimators of higher-order moments of both error components are obtained as solu
Publikováno v:
Statistica Sinica, Volume 31, Number 2, April 2021
UCrea Repositorio Abierto de la Universidad de Cantabria
Universidad de Cantabria (UC)
UCrea Repositorio Abierto de la Universidad de Cantabria
Universidad de Cantabria (UC)
This paper is concerned with the estimation of a fixed effects panel data model that adopts a partially linear form, in which the coeffcients of some variables are restricted to be constant but the coeffcients of other variables are assumed to be var
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::43f260e61d2af41c0be96ad8445bb513
http://hdl.handle.net/10902/20769
http://hdl.handle.net/10902/20769
Publikováno v:
Journal of Economic Surveys. 31:923-960
In this paper, we provide an intensive review of the recent developments for semiparametric and fully nonparametric panel data models that are linearly separable in the innovation and the individual-specific term. We analyze these developments under
Autor:
Alexandra Soberon, Winfried Stute
Publikováno v:
Journal of Multivariate Analysis 161 (2017) 123-140
UCrea Repositorio Abierto de la Universidad de Cantabria
Universidad de Cantabria (UC)
UCrea Repositorio Abierto de la Universidad de Cantabria
Universidad de Cantabria (UC)
Linear mixed models provide a useful tool to fit continuous longitudinal data, with the random effects and error term commonly assumed to have normal distributions. However, this restrictive assumption can result in a lack of robustness and needs to
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2f91d2edc92250af110443d5760713d2
http://hdl.handle.net/10902/12965
http://hdl.handle.net/10902/12965
Publikováno v:
Computational Statistics, september 2015, Volume 30, Issue 3, pp 885-906
UCrea Repositorio Abierto de la Universidad de Cantabria
Universidad de Cantabria (UC)
UCrea Repositorio Abierto de la Universidad de Cantabria
Universidad de Cantabria (UC)
Recently, some new techniques have been proposed for the estimation of semi-parametric fixed effects varying coefficient panel data models. These new techniques fall within the class of the so-called differencing estimators. In particular, we conside
Publikováno v:
The Econometrics Journal. 17:107-138
Summary In this paper, we present a new technique to estimate varying coefficient models of unknown form in a panel data framework where individual effects are arbitrarily correlated with the explanatory variables in an unknown way. The estimator is
Publikováno v:
Journal of Multivariate Analysis, 2015, 133, 95-122
Journal of Multivariate Analysis, Volume 133, January 2015, Pages 95–122
UCrea Repositorio Abierto de la Universidad de Cantabria
Universidad de Cantabria (UC)
Journal of Multivariate Analysis, Volume 133, January 2015, Pages 95–122
UCrea Repositorio Abierto de la Universidad de Cantabria
Universidad de Cantabria (UC)
In this paper, we consider the nonparametric estimation of a varying coefficient fixed effect panel data model. The estimator is based in a within (un-smoothed) transformation of the regression model and then a local linear regression is applied to e
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::abf54ccd26e6c4bdbee08acfdfd1c586
http://hdl.handle.net/10902/9522
http://hdl.handle.net/10902/9522
Publikováno v:
SSRN Electronic Journal.
In this paper we present a new technique to estimate varying coefficient models of unknown form in a panel data framework where individual effects are arbitrarily correlated with the explanatory variables in a unknown way. The resulting estimator is