Zobrazeno 1 - 10
of 29
pro vyhledávání: '"Alexander Verbovetsky"'
Autor:
Aleksei Bronislavovich Sosinskii, Aleksandr Petrovich Veselov, Michal Marvan, Dmitrii Borisovich Fuchs, Sergei Petrovich Novikov, Alexander Petrovich Krishchenko, Alexey Vasil'yevich Samokhin, Theodore Theodorovich Voronov, Victor Pavlovich Maslov, Фeдор Фeдорович Воронов, Iosif Semenovich Krasil'shchik, Sergei K. Lando, Michael M. Vinogradov, Yvette Kosmann-Schwarzbach, Victor A. Vassiliev, Victor G. Kac, Raffaele Vitolo, A. M. Astashov, Alexandr Sergeevich Mishchenko, Albert Schwarz, Igor Krichever, Vladimir Nikolaevitch Chetverikov, Nina Grigor'evna Khor'kova, J. Stasheff, Vladimir Nikolaevich Rubtsov, Aleksei Vadimovich Bocharov, Victor Matveevich Buchstaber, Alexander Yakovlevich Helemskii, Anatolii Moiseevich Vershik, Valentin Vasil'evich Lychagin, L. Vitagliano, Irina Viktorovna Astashova, Alexander Verbovetsky
Publikováno v:
Uspekhi Matematicheskikh Nauk. 75:185-190
This is the first book devoted to the task of computing integrability structures by computer. The symbolic computation of integrability operator is a computationally hard problem and the book covers a huge number of situations through tutorials. Th
Publikováno v:
The Symbolic Computation of Integrability Structures for Partial Differential Equations ISBN: 9783319716541
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::322a6bca90eadf8acbb6f6755ae37ec1
https://doi.org/10.1007/978-3-319-71655-8_7
https://doi.org/10.1007/978-3-319-71655-8_7
Publikováno v:
The Symbolic Computation of Integrability Structures for Partial Differential Equations ISBN: 9783319716541
A recursion operator for symmetries of an equation \(\mathcal {E}\) is a \(\mathcal {C}\)-differential operator \(\mathcal {R}\colon \varkappa =\mathcal {F}(\mathcal {E};m) \to \varkappa \) that takes symmetries of \(\mathcal {E}\) to themselves. We
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::7a32fc176c4db424f2110cd37b979362
https://doi.org/10.1007/978-3-319-71655-8_11
https://doi.org/10.1007/978-3-319-71655-8_11
Publikováno v:
The Symbolic Computation of Integrability Structures for Partial Differential Equations ISBN: 9783319716541
We discuss here the notion of conservation laws and briefly the theory of Abelian coverings over infinitely prolonged equations. Computation of conservation laws is also closely related to that of cosymmetries , and we shall continue this discussion
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::e3d622ec405ab67d152568bd8ebd29e1
https://doi.org/10.1007/978-3-319-71655-8_3
https://doi.org/10.1007/978-3-319-71655-8_3
Publikováno v:
The Symbolic Computation of Integrability Structures for Partial Differential Equations ISBN: 9783319716541
In this chapter, we give an overview of the basic computational problems that arise in the study of geometrical aspects related to nonlinear partial differential equations and in the study of their integrability in particular.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::670bcb5f76e172cd504af91786766beb
https://doi.org/10.1007/978-3-319-71655-8_1
https://doi.org/10.1007/978-3-319-71655-8_1
Publikováno v:
The Symbolic Computation of Integrability Structures for Partial Differential Equations ISBN: 9783319716541
A variational Poisson structure on a differential equation \(\mathcal {E}\) is a \(\mathcal {C}\)-differential operator that takes cosymmetries of \(\mathcal {E}\) to its symmetries and possesses the necessary integrability properties. In the literat
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::9f389b478c5676b5cddf63813956c1e5
https://doi.org/10.1007/978-3-319-71655-8_10
https://doi.org/10.1007/978-3-319-71655-8_10
Publikováno v:
The Symbolic Computation of Integrability Structures for Partial Differential Equations ISBN: 9783319716541
The tangent covering is an equation naturally related to the initial equation \(\mathbb {E}\) and which covers the latter and plays the same role in the category of differential equations that the tangent bundle plays in the category of smooth manifo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::332ff1b7c8afedcadcec61cee48107e4
https://doi.org/10.1007/978-3-319-71655-8_6
https://doi.org/10.1007/978-3-319-71655-8_6
Publikováno v:
The Symbolic Computation of Integrability Structures for Partial Differential Equations ISBN: 9783319716541
A variational symplectic structure on an equation \(\mathcal {E}\) is a \(\mathcal {C}\)-differential operator \(\mathcal {S}\colon \varkappa = \mathcal {F}(\mathcal {E};m)\to \hat {P} = \mathcal {F}(\mathcal {E};r)\) that takes symmetries of \(\math
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::8bbf0ee39ec58d145dfbac847a1cd2bb
https://doi.org/10.1007/978-3-319-71655-8_8
https://doi.org/10.1007/978-3-319-71655-8_8
Publikováno v:
The Symbolic Computation of Integrability Structures for Partial Differential Equations ISBN: 9783319716541
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b2aaba03f2af6553bad78fa1f7b2ae68
https://doi.org/10.1007/978-3-319-71655-8_9
https://doi.org/10.1007/978-3-319-71655-8_9