Zobrazeno 1 - 10
of 81
pro vyhledávání: '"Alexander V. Mikhailov"'
Publikováno v:
Symmetry, Integrability and Geometry: Methods and Applications, Vol 7, p 096 (2011)
A special class of integrable nonlinear differential equations related to A.III-type symmetric spaces and having additional reductions are analyzed via the inverse scattering method (ISM). Using the dressing method we construct two classes of soliton
Externí odkaz:
https://doaj.org/article/f48511b0d653494caa10d5c071410ef8
Integration of differential equations is a central problem in mathematics and several approaches have been developed by studying analytic, algebraic, and algorithmic aspects of the subject. One of these is Differential Galois Theory, developed by Kol
Publikováno v:
Uspekhi Matematicheskikh Nauk. 76:37-104
Обзор посвящен интегрируемым полиномиальным гамильтоновым системам, ассоциированным с симметрическими степенями плоских алгебраичес
In this paper we explore a recently emerged approach to the problem of quantisation based on the notion of quantisation ideals. We explicitly prove that the nonabelian Volterra together with the whole hierarchy of its symmetries admit a deformation q
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b16e75445ef7d657e5f152b9748d2b7e
We propose a new method to tackle the integrability problem for evolutionary differential–difference equations of arbitrary order. It enables us to produce necessary integrability conditions, to determine whether a given equation is integrable or n
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a648c4c930e3c15cf8c9ce24327d3f9d
Autor:
Alexander V. Mikhailov
We consider dynamical systems on the space of functions taking values in a free associative algebra. The system is said to be integrable if it possesses an infinite dimensional Lie algebra of commuting symmetries. In this paper we propose a new appro
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6a1ae44342fadd948c4a4d27dda42089
https://eprints.whiterose.ac.uk/164882/8/2009.01838v1.pdf
https://eprints.whiterose.ac.uk/164882/8/2009.01838v1.pdf
In this paper we are developing a theory of rational (pseudo) difference Hamiltonian operators, focusing in particular on its algebraic aspects. We show that a pseudo--difference Hamiltonian operator can be represented as a ratio $AB^{-1}$ of two dif
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::dbfa136d18a307bceb76f0184762e2a1
Autor:
Vladimir E. Fortov, A. M. Rubenchik, E. A. Kuznetsov, Valerii A. Rubakov, S. P. Novikov, S. L. Musher, Alexander V. Mikhailov, Gennadii A Mesyats, Yakov G. Sinai, Lev Zelenyi, Aleksandr V. Gurevich, Roald Z. Sagdeev
Publikováno v:
Physics-Uspekhi. 62:1053-1055
Publikováno v:
Функциональный анализ и его приложения. 51:4-27
Publikováno v:
Functional Analysis and Its Applications. 51:2-21
We construct Lie algebras of vector fields on universal bundles of symmetric squares of hyperelliptic curves of genus g = 1, 2,.. For each of these Lie algebras, the Lie subalgebra of vertical fields has commuting generators, while the generators of