Zobrazeno 1 - 10
of 25
pro vyhledávání: '"Alexander Toschev"'
Autor:
Alina Fedorova, Nikola Jovišić, Jordi Vallverdù, Silvia Battistoni, Miloš Jovičić, Milovan Medojević, Alexander Toschev, Evgeniia Alshanskaia, Max Talanov, Victor Erokhin
Publikováno v:
Advanced Electronic Materials, Vol 10, Iss 12, Pp n/a-n/a (2024)
Abstract The energy efficiency of Artificial Intelligence (AI) systems is a crucial and actual issue that may have an important impact on an ecological, economic and technological level. Spiking Neural Networks (SNNs) are strongly suggested as valid
Externí odkaz:
https://doaj.org/article/4acefeea6264422ebab309acc62ebdd5
Autor:
Yulia Mikhailova, Anna Pozdeeva, Alina Suleimanova, Alexey Leukhin, Alexander Toschev, Timur Lukmanov, Elsa Fatyhova, Evgeni Magid, Igor Lavrov, Max Talanov
Publikováno v:
Frontiers in Neuroscience, Vol 17 (2023)
The effect of inhibitory management is usually underestimated in artificial control systems, using biological analogy. According to our hypothesis, the muscle hypertonus could be effectively compensated via stimulation by bio-plausible patterns. We p
Externí odkaz:
https://doaj.org/article/08f31aa5e83842449957f59144b6b75f
Publikováno v:
Frontiers in Computer Science, Vol 2 (2020)
Scientists need to publish the results of their work to remain relevant and in demanded. The well-known principle of “publish or perish” often forces scientists to pursue an increase in quantity, not quality. Along with the problems of authorship
Externí odkaz:
https://doaj.org/article/b24c86fe4fab4bfaa658cce0a0884815
Autor:
Yuliya Mihaylova, Anna Pozdeeva, Alexey Leukhin, Alexander Toschev, Max Talanov, Jordi Vallverdú, Alina Suleimanova
Publikováno v:
Journal of Artificial Intelligence and Consciousness. 10:15-25
In this paper, we provide a brief description of currently existing neural interfaces such as a brain–machine interface, machine–brain interface and bidirectional brain–computer–brain interface. Nevertheless, our aim is not only to provide a
Autor:
Yulia Mikhailova, Anna Pozdeeva, Alina Suleimanova, Alexey Leukhin, Alexander Toschev, Timur Lukmanov, Elsa Fatykhova, Evgeni Magid, Igor Lavrov, Max Talanov
The inhibitory management effect is usually un- derestimated in artificial control systems, using biological anal- ogy. According to our hypothesis, the muscle hypertonus could be effectively compensated via stimulation by bio plausible patterns. We
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::d67ddb013d2cb14b5bf3e37528aba6aa
https://doi.org/10.21203/rs.3.rs-1661671/v1
https://doi.org/10.21203/rs.3.rs-1661671/v1
Autor:
Max Talanov, Alexander Toschev
Publikováno v:
BioNanoScience. 10:811-823
In this work we present the review of cognitive architectures and bio-inspired approaches used for cognitive modeling with focus on consciousness and common sense computational implementation.
Publikováno v:
BioNanoScience. 10:416-419
This work is dedicated to the creation and comparison of the simplified model of a neuron for the real-time processing in embedded bio-compatible devices. We propose bio-compatible model of a neuron inspired by works of Izhikevich (IEEE Transactions
Autor:
Max Talanov, Alina Suleimanova, Alexey Leukhin, Yulia Mikhailova, Alexander Toschev, Alena Militskova, Igor Lavrov, Evgeni Magid
Publikováno v:
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
Autor:
Evgeniy Zykov, Alexander Toschev, Victor Erokhin, Max Talanov, Dinar Masaev, Alina Suleimanova
Publikováno v:
2021 International Siberian Conference on Control and Communications (SIBCON).
In this paper we present results of the simulation and physical implementation of eSTDP and iSTDP learning functions for memristive devices, bio-plausible neurons, and soma leakage integrator. The implementation of the STDP is implemented as memristi
Autor:
Nikita V. Prudnikov, Alexander Toschev, Max Talanov, Victor Erokhin, Yuriy Gerasimov, Evgenii Zykov
Publikováno v:
Chaos, solitons and fractals 143 (2021): 110549-1–110549-6. doi:10.1016/j.chaos.2020.110549
info:cnr-pdr/source/autori:Gerasimov, Yuriy; Zykov, Evgenii; Prudnikov, Nikita; Talanov, Max; Toschev, Alexander; Erokhin, Victor/titolo:On the organic memristive device resistive switching efficacy/doi:10.1016%2Fj.chaos.2020.110549/rivista:Chaos, solitons and fractals/anno:2021/pagina_da:110549-1/pagina_a:110549-6/intervallo_pagine:110549-1–110549-6/volume:143
info:cnr-pdr/source/autori:Gerasimov, Yuriy; Zykov, Evgenii; Prudnikov, Nikita; Talanov, Max; Toschev, Alexander; Erokhin, Victor/titolo:On the organic memristive device resistive switching efficacy/doi:10.1016%2Fj.chaos.2020.110549/rivista:Chaos, solitons and fractals/anno:2021/pagina_da:110549-1/pagina_a:110549-6/intervallo_pagine:110549-1–110549-6/volume:143
This paper is dedicated to the experimental study of learning properties of systems, based on polyaniline (PANI) memristive devices. Signals with different forms, amplitudes, frequencies have been used as external stimuli and it has been demonstrated
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a6b917e0386452a87c55f372fa707017