Zobrazeno 1 - 10
of 17
pro vyhledávání: '"Alexander Stasinski"'
Autor:
Alexander Stasinski
Publikováno v:
Journal of algebra, 2021, Vol.566, pp.119-135 [Peer Reviewed Journal]
Let F q be a finite field of characteristic p and let W 2 ( F q ) be the ring of Witt vectors of length two over F q . We prove that for any integer n such that p divides n, the groups SL n ( F q [ t ] / t 2 ) and SL n ( W 2 ( F q ) ) have the same n
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c95449420810641986cd3039d91fbf1b
http://dro.dur.ac.uk/31863/1/31863.pdf
http://dro.dur.ac.uk/31863/1/31863.pdf
Autor:
Alexander Stasinski, Shaun Stevens
Publikováno v:
Bulletin of the London Mathematical Society. 49:1066-1084
Let $\mathfrak{o}$ be the ring of integers in a non-Archimedean local field with finite residue field, $\mathfrak{p}$ its maximal ideal, and $r\geq2$ an integer. An irreducible representation of the finite group $G_{r}=\mathrm{GL}_{N}(\mathfrak{o}/\m
Autor:
Alexander Stasinski
Publikováno v:
Around Langlands Correspondences. :337-358
We give a survey of the representation theory of GLN over finite local principal ideal rings via Clifford theory, with an emphasis on the construction of regular representations. We review results of Shintani and Hill, and the generalisation of Takas
Autor:
Alexander Stasinski
Publikováno v:
The American mathematical monthly, 2021, Vol.128(3), pp.239-249 [Peer Reviewed Journal]
We give a definition of a class of Dedekind domains which includes the rings of integers of global fields and give a proof that all rings in this class have finite ideal class group. We also prove that this class coincides with the class of rings of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::be810f4372ac8572b33370f6d3f19069
Autor:
Alexander Stasinski
Publikováno v:
Israel journal of mathematics, 2018, Vol.228(1), pp.211-227 [Peer Reviewed Journal]
We prove that for every trace zero matrix $A$ over a principal ideal ring $R$, there exist trace zero matrices $X,Y$ over $R$ such that $XY-YX=A$. Moreover, we show that $X$ can be taken to be regular mod every maximal ideal of $R$. This strengthens
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::04609a2798b39f3ba9a4d2b9864aaa14
https://doi.org/10.1007/s11856-018-1762-5
https://doi.org/10.1007/s11856-018-1762-5
Publikováno v:
Journal of algebra, 2019, Vol.525, pp.171-190 [Peer Reviewed Journal]
Let $\mathbb{F}_{q}$ be a finite field of characteristic $p$, and let $W_{2}(\mathbb{F}_{q})$ be the ring of Witt vectors of length two over $\mathbb{F}_{q}$. We prove that for any reductive group scheme $\mathbb{G}$ over $\mathbb{Z}$ such that $p$ i
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::805f9297923209905e58ef5b8e467f15
Autor:
Alexander Stasinski
Publikováno v:
Transactions of the American Mathematical Society, 2016, Vol.368(4), pp.2333-2354 [Peer Reviewed Journal]
We prove that if R is a principal ideal ring and A\in\M_n(R) is a matrix with trace zero, then A is a commutator, that is, A=XY-YX for some X,Y\in\M_n(R). This generalises the corresponding result over fields due to Albert and Muckenhoupt, as well as
Autor:
Alexander Stasinski, Zhe Chen
Publikováno v:
Selecta mathematica, 2017, Vol.23(4), pp. 2907-2926 [Peer Reviewed Journal]
In this paper we study higher Deligne–Lusztig representations of reductive groups over finite quotients of discrete valuation rings. At even levels, we show that these geometrically constructed representations, defined by Lusztig, coincide with cer
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::07f6da819c109dd45991987cbb0a332b
http://dro.dur.ac.uk/22314/1/22314.pdf
http://dro.dur.ac.uk/22314/1/22314.pdf
Autor:
Jokke Häsä, Alexander Stasinski
Publikováno v:
Transactions of the American Mathematical Society, 2019, Vol.372(2), pp.925-980 [Peer Reviewed Journal]
We study the representation growth of simple compact Lie groups and of $\mathrm{SL}_n(\mathcal{O})$, where $\mathcal{O}$ is a compact discrete valuation ring, as well as the twist representation growth of $\mathrm{GL}_n(\mathcal{O})$. This amounts to
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ee492eb4dbbd8d373d6004aa27304cfb
Autor:
Alexander Stasinski, Christopher Voll
Publikováno v:
Forum mathematicum, 2017, Vol.29(3), pp.717-734 [Peer Reviewed Journal]
We compute the representation zeta functions of some finitely generated nilpotent groups associated to unipotent group schemes over rings of integers in number fields. These group schemes are defined by Lie lattices whose presentations are modelled o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::27442fe948c985e4b3d1c80f1666bd70
http://arxiv.org/abs/1505.06837
http://arxiv.org/abs/1505.06837