Zobrazeno 1 - 10
of 59
pro vyhledávání: '"Alexander Sboev"'
Publikováno v:
Big Data and Cognitive Computing, Vol 8, Iss 3, p 22 (2024)
Developing a spiking neural network architecture that could prospectively be trained on energy-efficient neuromorphic hardware to solve various data analysis tasks requires satisfying the limitations of prospective analog or digital hardware, i.e., l
Externí odkaz:
https://doaj.org/article/fd3048681e994502b23db8a177c6e899
Autor:
Alexander Sboev, Roman Rybka, Dmitry Kunitsyn, Alexey Serenko, Vyacheslav Ilyin, Vadim Putrolaynen
Publikováno v:
Big Data and Cognitive Computing, Vol 7, Iss 4, p 184 (2023)
In this paper, we demonstrate that fixed-weight layers generated from random distribution or logistic functions can effectively extract significant features from input data, resulting in high accuracy on a variety of tasks, including Fisher’s Iris,
Externí odkaz:
https://doaj.org/article/bc35e65818554e7fbad1f7747e10fdca
Autor:
Alexander Sboev, Roman Rybka, Anton Selivanov, Ivan Moloshnikov, Artem Gryaznov, Alexander Naumov, Sanna Sboeva, Gleb Rylkov, Soyora Zakirova
Publikováno v:
Mathematics, Vol 11, Iss 2, p 354 (2023)
An extraction of significant information from Internet sources is an important task of pharmacovigilance due to the need for post-clinical drugs monitoring. This research considers the task of end-to-end recognition of pharmaceutically significant na
Externí odkaz:
https://doaj.org/article/ebe029668f60475aa64c7f3482f810ac
Autor:
Alexander Sboev, Roman Rybka, Artem Gryaznov, Ivan Moloshnikov, Sanna Sboeva, Gleb Rylkov, Anton Selivanov
Publikováno v:
Big Data and Cognitive Computing, Vol 6, Iss 4, p 145 (2022)
Mapping the pharmaceutically significant entities on natural language to standardized terms/concepts is a key task in the development of the systems for pharmacovigilance, marketing, and using drugs out of the application scope. This work estimates t
Externí odkaz:
https://doaj.org/article/a0bc239b672440f6a92c5b408a7b0dbe
Autor:
Alexander Sboev, Sanna Sboeva, Ivan Moloshnikov, Artem Gryaznov, Roman Rybka, Alexander Naumov, Anton Selivanov, Gleb Rylkov, Vyacheslav Ilyin
Publikováno v:
Applied Sciences, Vol 12, Iss 1, p 491 (2022)
The paper presents the full-size Russian corpus of Internet users’ reviews on medicines with complex named entity recognition (NER) labeling of pharmaceutically relevant entities. We evaluate the accuracy levels reached on this corpus by a set of a
Externí odkaz:
https://doaj.org/article/731013737fc240be96cdebf89cc5954d
Autor:
Alexander Sboev, Anton Selivanov, Ivan Moloshnikov, Roman Rybka, Artem Gryaznov, Sanna Sboeva, Gleb Rylkov
Publikováno v:
Big Data and Cognitive Computing, Vol 6, Iss 1, p 10 (2022)
Nowadays, the analysis of digital media aimed at prediction of the society’s reaction to particular events and processes is a task of a great significance. Internet sources contain a large amount of meaningful information for a set of domains, such
Externí odkaz:
https://doaj.org/article/260f417dea184fafa646b99957c190b1
Publikováno v:
Mathematics, Vol 9, Iss 24, p 3237 (2021)
The problem with training spiking neural networks (SNNs) is relevant due to the ultra-low power consumption these networks could exhibit when implemented in neuromorphic hardware. The ongoing progress in the fabrication of memristors, a prospective b
Externí odkaz:
https://doaj.org/article/4ae0103f1c8447158cfc25764c2818c1
An environment emulator for training a neural network model to solve the 'Following the leader' task
Publikováno v:
Procedia Computer Science. 213:209-216
Publikováno v:
Proceedings of The 6th International Workshop on Deep Learning in Computational Physics — PoS(DLCP2022).
Autor:
Anton Aleksandrovich Selivanov, Artem Gryaznov, Roman Rybka, Alexander Sboev, Sanna Sboeva, Yuliya Klueva
Publikováno v:
Proceedings of The 6th International Workshop on Deep Learning in Computational Physics — PoS(DLCP2022).