Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Alexander Rosenberg Johansen"'
Autor:
Magnús Halldór Gíslason, Henrik Nielsen, José Juan Almagro Armenteros, Alexander Rosenberg Johansen
Publikováno v:
Current Research in Biotechnology, Vol 3, Iss , Pp 6-13 (2021)
GPI-anchors constitute a very important post-translational modification, linking many proteins to the outer face of the plasma membrane in eukaryotic cells. Since experimental validation of GPI-anchoring signals is slow and costly, computational appr
Externí odkaz:
https://doaj.org/article/949bc90311064b8c8a816b66f9a70ad2
Autor:
Felix Teufel, Magnús Halldór Gíslason, José Juan Almagro Armenteros, Alexander Rosenberg Johansen, Ole Winther, Henrik Nielsen
When splitting biological sequence data for the development and testing of predictive models, it is necessary to avoid too closely related pairs of sequences ending up in different partitions. If this is ignored, performance estimates of prediction m
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::adaf263067d300bea9dd4b95f4e686ee
https://doi.org/10.1101/2023.04.14.536886
https://doi.org/10.1101/2023.04.14.536886
Autor:
Vineet Thumuluri, José Juan Almagro Armenteros, Alexander Rosenberg Johansen, Henrik Nielsen, Ole Winther
Publikováno v:
Thumuluri, V, Almagro Armenteros, J J, Johansen, A R, Nielsen, H & Winther, O 2022, ' DeepLoc 2.0: multi-label subcellular localization prediction using protein language models ', Nucleic Acids Research, vol. 50, no. 1, pp. W228-W234 . https://doi.org/10.1093/nar/gkac278
Thumuluri, V, Almagro Armenteros, J J, Johansen, A R, Nielsen, H & Winther, O 2022, ' DeepLoc 2.0 : multi-label subcellular localization prediction using protein language models ', Nucleic Acids Research, vol. 50, no. W1, pp. W228-W234 . https://doi.org/10.1093/nar/gkac278
Thumuluri, V, Almagro Armenteros, J J, Johansen, A R, Nielsen, H & Winther, O 2022, ' DeepLoc 2.0 : multi-label subcellular localization prediction using protein language models ', Nucleic Acids Research, vol. 50, no. W1, pp. W228-W234 . https://doi.org/10.1093/nar/gkac278
The prediction of protein subcellular localization is of great relevance for proteomics research. Here, we propose an update to the popular tool DeepLoc with multi-localization prediction and improvements in both performance and interpretability. For
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::51766d3be02112793828f91278ed9fb1
https://orbit.dtu.dk/en/publications/71612ad8-ad95-40fa-a4cf-c23c25af3151
https://orbit.dtu.dk/en/publications/71612ad8-ad95-40fa-a4cf-c23c25af3151
Autor:
Jose Juan Almagro Armenteros, Jesper Salomon, Henrik Nielsen, Alexander Rosenberg Johansen, Vineet Thumuluri, Hannah-Marie Martiny
Publikováno v:
Thumuluri, V, Martiny, H-M, Armenteros, J J A, Salomon, J, Nielsen, H, Johansen, A R & Valencia, A (ed.) 2022, ' NetSolP: predicting protein solubility in E. coli using language models ', Bioinformatics, vol. 38, no. 4, pp. 941–946 . https://doi.org/10.1093/bioinformatics/btab801
Solubility and expression levels of proteins can be a limiting factor for large-scale studies and industrial production. By determining the solubility and expression directly from the protein sequence, the success rate of wet-lab experiments can be i
Autor:
Alexander Rosenberg Johansen, Vineet Thumuluri, Hannah-Marie Martiny, Henrik Nielsen, Jose Juan Almagro Armenteros, Jesper Salomon
Publikováno v:
Thumuluri, V, Martiny, H M, Almagro Armenteros, J J, Salomon, J, Nielsen, H & Johansen, A R 2022, ' NetSolP : predicting protein solubility in Escherichia coli using language models ', Bioinformatics, vol. 38, no. 4, pp. 941-946 . https://doi.org/10.1093/bioinformatics/btab801
Motivation Solubility and expression levels of proteins can be a limiting factor for large-scale studies and industrial production. By determining the solubility and expression directly from the protein sequence, the success rate of wet-lab experimen
Autor:
Felix Teufel, José Juan Almagro Armenteros, Alexander Rosenberg Johansen, Magnús Halldór Gíslason, Silas Irby Pihl, Konstantinos D. Tsirigos, Ole Winther, Søren Brunak, Gunnar von Heijne, Henrik Nielsen
Publikováno v:
Teufel, F, Almagro Armenteros, J J, Johansen, A R, Gíslason, M H, Pihl, S I, Tsirigos, K D, Winther, O, Brunak, S, von Heijne, G & Nielsen, H 2022, ' SignalP 6.0 predicts all five types of signal peptides using protein language models ', Nature Biotechnology, vol. 40, pp. 1023-1025 . https://doi.org/10.1038/s41587-021-01156-3
Teufel, F, Almagro Armenteros, J J, Johansen, A R, Gíslason, M H, Pihl, S I, Tsirigos, K D, Winther, O, Brunak, S, von Heijne, G & Nielsen, H 2022, ' SignalP 6.0 predicts all five types of signal peptides using protein language models ', Nature Biotechnology, vol. 40, pp. 1023–1025 . https://doi.org/10.1038/s41587-021-01156-3
Nature Biotechnology, 40 (7)
Teufel, F, Almagro Armenteros, J J, Johansen, A R, Gíslason, M H, Pihl, S I, Tsirigos, K D, Winther, O, Brunak, S, von Heijne, G & Nielsen, H 2022, ' SignalP 6.0 predicts all five types of signal peptides using protein language models ', Nature Biotechnology, vol. 40, pp. 1023–1025 . https://doi.org/10.1038/s41587-021-01156-3
Nature Biotechnology, 40 (7)
Signal peptides (SPs) are short amino acid sequences that control protein secretion and translocation in all living organisms. SPs can be predicted from sequence data, but existing algorithms are unable to detect all known types of SPs. We introduce
Autor:
Alexander Rosenberg Johansen, Ole Winther, Søren Brunak, Teufel F, Konstantinos D. Tsirigos, Henrik Nielsen, Gislason Mh, Armenteros Jja, Pihl Si, von Heijne G
Signal peptides (SPs) are short amino acid sequences that control protein secretion and translocation in all living organisms. As experimental characterization of SPs is costly, prediction algorithms are applied to predict them from sequence data. Ho
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b82dffa967b4440d666b54ba88290150
https://doi.org/10.1101/2021.06.09.447770
https://doi.org/10.1101/2021.06.09.447770
Autor:
Morten Lind Jensen, Alexander Rosenberg Johansen, Nicklas Hansen, Jens M. Tarp, Peter Ebert Christensen, Morten Mørup, Ali Mohebbi, Henrik Bengtsson
Publikováno v:
EMBC
Mohebbi, A, Johansen, A R, Hansen, N, Christensen, P E, Tarp, J M, Jensen, M L, Bengtsson, H & Morup, M 2020, Short Term Blood Glucose Prediction based on Continuous Glucose Monitoring Data . in Proceedings of 42 nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society : Enabling Innovative Technologies for Global Healthcare, EMBC 2020 ., 9176695, IEEE, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, vol. 2020-July, pp. 5140-5145, 42 nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society, Montreal, Quebec, Canada, 20/07/2020 . https://doi.org/10.1109/EMBC44109.2020.9176695
Mohebbi, A, Johansen, A R, Hansen, N, Christensen, P E, Tarp, J M, Jensen, M L, Bengtsson, H & Morup, M 2020, Short Term Blood Glucose Prediction based on Continuous Glucose Monitoring Data . in Proceedings of 42 nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society : Enabling Innovative Technologies for Global Healthcare, EMBC 2020 ., 9176695, IEEE, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, vol. 2020-July, pp. 5140-5145, 42 nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society, Montreal, Quebec, Canada, 20/07/2020 . https://doi.org/10.1109/EMBC44109.2020.9176695
Continuous Glucose Monitoring (CGM) has enabled important opportunities for diabetes management. This study explores the use of CGM data as input for digital decision support tools. We investigate how Recurrent Neural Networks (RNNs) can be used for
MotivationLanguage modelling (LM) on biological sequences is an emergent topic in the field of bioinformatics. Current research has shown that language modelling of proteins can create context-dependent representations that can be applied to improve
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8ba9fddfbb907d3e47076843c08fe807
Autor:
Magnús Halldór Gíslason, Jose Juan Almagro Armenteros, Henrik Nielsen, Alexander Rosenberg Johansen
Publikováno v:
Current Research in Biotechnology, Vol 3, Iss, Pp 6-13 (2021)
Gíslason, M H, Nielsen, H, Armenteros, J J A & Johansen, A R 2021, ' Prediction of GPI-anchored proteins with pointer neural networks ', Current Research in Biotechnology, vol. 3, pp. 6-13 . https://doi.org/10.1016/j.crbiot.2021.01.001
Gíslason, M H, Nielsen, H, Almagro Armenteros, J J & Johansen, A R 2021, ' Prediction of GPI-anchored proteins with pointer neural networks ', Current Research in Biotechnology, vol. 3, pp. 6-13 . https://doi.org/10.1016/j.crbiot.2021.01.001
Gíslason, M H, Nielsen, H, Armenteros, J J A & Johansen, A R 2021, ' Prediction of GPI-anchored proteins with pointer neural networks ', Current Research in Biotechnology, vol. 3, pp. 6-13 . https://doi.org/10.1016/j.crbiot.2021.01.001
Gíslason, M H, Nielsen, H, Almagro Armenteros, J J & Johansen, A R 2021, ' Prediction of GPI-anchored proteins with pointer neural networks ', Current Research in Biotechnology, vol. 3, pp. 6-13 . https://doi.org/10.1016/j.crbiot.2021.01.001
GPI-anchors constitute a very important post-translational modification, linking many proteins to the outer face of the plasma membrane in eukaryotic cells. Since experimental validation of GPI-anchoring signals is slow and costly, computational appr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::64eb397b54cadb0578563d4c90a7d37a
https://doi.org/10.1101/838680
https://doi.org/10.1101/838680