Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Alexander P. Kuleshov"'
Publikováno v:
Известия Томского политехнического университета: Инжиниринг георесурсов, Vol 334, Iss 4, Pp 163-174 (2023)
The relevance of the study lies in the problem of calculating the bearing capacity of pile-screw foundations in the conditions of cryolithozone propagation under the influence of static pulling and pressing loads. Pile-screw foundations are a fairly
Externí odkaz:
https://doaj.org/article/77e3301a4da0415a84e74f9d755dc14d
Publikováno v:
Известия Томского политехнического университета: Инжиниринг георесурсов, Vol 334, Iss 3, Pp 40-50 (2023)
The relevance of the work consists in the analysis of the results of field control tests of soils with a static load on indentation with full-scale piles, performed according to accelerated and standard methods in conditions of permafrost spreading.
Externí odkaz:
https://doaj.org/article/e5191b17ebf94ca3ba81c7f5f12241d7
Publikováno v:
Известия Томского политехнического университета: Инжиниринг георесурсов, Vol 332, Iss 6, Pp 198-208 (2021)
The relevance of the work is caused by the need to analyze the existing methods for calculating the slope stability coefficient. The paper analyzes three calculation methods and provides an analysis of the rational use of each method. Recommendations
Externí odkaz:
https://doaj.org/article/14479e184a2c44e49c6993fb550d3ddf
Autor:
Alexander P. Kuleshov, Vadim V. Pendin
Publikováno v:
Известия Томского политехнического университета: Инжиниринг георесурсов, Vol 330, Iss 8, Pp 190-204 (2019)
The relevance of the work is caused by preservation of the existing building, which is in the zone of influence of new construction. After identification of engineering-geological processes affecting adversely the conditions of operation of the facil
Externí odkaz:
https://doaj.org/article/3f7ff153b8db4728be3ff20f15220fb7
Publikováno v:
Computational Intelligence and Neuroscience, Vol 2021 (2021)
This article discusses some trends and concepts in developing new generation of future Artificial General Intelligence (AGI) systems which relate to complex facets and different types of human intelligence, especially social, emotional, attentional a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d2c0e7429747924fc33b8f65e12f122b
http://arxiv.org/abs/2008.04793
http://arxiv.org/abs/2008.04793
Publikováno v:
ICMLA
An appearance-based robot self-localization problem is considered in the machine learning framework. The appearance space is composed of all possible images, which can be captured by a robot's visual system under all robot localizations. Using recent
Publikováno v:
Machine Learning and Data Mining in Pattern Recognition ISBN: 9783319624150
MLDM
MLDM
We consider an appearance-based robot self-localization problem in the machine learning framework. Using recent manifold learning techniques, we propose a new geometrically motivated solution. The solution includes estimation of the robot localizatio
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::d1bbbd4778d1c345e669d592cb1862bc
https://doi.org/10.1007/978-3-319-62416-7_20
https://doi.org/10.1007/978-3-319-62416-7_20
Publikováno v:
Machine Learning and Data Mining in Pattern Recognition ISBN: 9783319419190
MLDM
MLDM
Regression on manifolds problem is to estimate an unknown smooth function f that maps p-dimensional manifold-valued inputs, whose values lie on unknown Input manifold M of lower dimensionality q < p embedded in an ambient high-dimensional input space
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::e5f56d46911006d00df8105c88aa777b
https://doi.org/10.1007/978-3-319-41920-6_23
https://doi.org/10.1007/978-3-319-41920-6_23
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783319333946
COPA
COPA
Let fX be unknown smooth function which maps p-dimensional manifold-valued inputs X, whose values lie on unknown Input manifold M of lower dimensionality qi¾?
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::8ab33062825ae8352e9d028f023de5bf
https://doi.org/10.1007/978-3-319-33395-3_15
https://doi.org/10.1007/978-3-319-33395-3_15
Publikováno v:
Artificial Neural Networks in Pattern Recognition ISBN: 9783319461816
ANNPR
ANNPR
Various Dimensionality Reduction algorithms transform initial high-dimensional data into their lower-dimensional representations preserving chosen properties of the initial data. Typically, such algorithms use the solution of large-dimensional optimi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::8655f614093e2f03b16fa8660a276588
https://doi.org/10.1007/978-3-319-46182-3_5
https://doi.org/10.1007/978-3-319-46182-3_5