Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Alexander Oliver Mader"'
Autor:
Cristian Lorenz, Martin Bergtholdt, Carsten Meyer, Jens von Berg, Alexander Oliver Mader, Jan Modersitzki, Hauke Schramm
Publikováno v:
Computer Vision and Image Understanding. :45-53
The automatic detection and accurate localization of landmarks is a crucial task in medical imaging. It is necessary for tasks like diagnosis, surgical planning, and post-operative assessment. A common approach to localize multiple landmarks is to co
Autor:
Eren Bora Yilmaz, Alexander Oliver Mader, Jaime Peña, Tobias Fricke, Carsten Meyer, Claus-Christian Glüer
Publikováno v:
Interpretable and Annotation-Efficient Learning for Medical Image Computing ISBN: 9783030611651
iMIMIC/MIL3iD/LABELS@MICCAI
iMIMIC/MIL3iD/LABELS@MICCAI
Automated evaluation of vertebral fracture status on computed tomography (CT) scans acquired for various purposes (opportunistic CT) may substantially enhance vertebral fracture detection rate. Convolutional neural networks (CNNs) have shown promisin
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::620b281f4c0cab0712f5e91ad68d83cf
https://doi.org/10.1007/978-3-030-61166-8_1
https://doi.org/10.1007/978-3-030-61166-8_1
Publikováno v:
Communications in Computer and Information Science ISBN: 9783030393427
MIUA
MIUA
Low back pain is a leading cause of disability that has been associated with intervertebral disc (IVD) degeneration by various clinical studies. With MRT being the imaging technique of choice for IVDs due to its excellent soft tissue contrast, we pro
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::5fea8b689a9c5e10d36780ab98d8d1c5
https://doi.org/10.1007/978-3-030-39343-4_31
https://doi.org/10.1007/978-3-030-39343-4_31
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783030322250
MICCAI (6)
MICCAI (6)
The fully automatic localization of key points in medical images is an important and active area in applied machine learning, with very large sets of key points still being an open problem. To this end, we extend two general state-of-the-art localiza
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::12fed522f38627294a3f058cec3c3691
https://doi.org/10.1007/978-3-030-32226-7_43
https://doi.org/10.1007/978-3-030-32226-7_43
Publikováno v:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 ISBN: 9783030009335
MICCAI (2)
MICCAI (2)
Localization and labeling of posterior ribs in radiographs is an important task and a prerequisite for, e.g., quality assessment, image registration, and automated diagnosis. In this paper, we propose an automatic, general approach for localizing spa
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c3485634e712d26b51d3bfcf4da0a923
https://doi.org/10.1007/978-3-030-00934-2_63
https://doi.org/10.1007/978-3-030-00934-2_63
Publikováno v:
Informatik aktuell ISBN: 9783662543443
Bildverarbeitung für die Medizin
Bildverarbeitung für die Medizin
Accurate localization of sets of anatomical landmarks is a challenging task, yet often required in automatic analysis of medical images. Several groups – e.g., Donner et al. – have shown that it is beneficial to incorporate geometrical relations
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::d70046ccd861a89875b9a1e715c5ec69
https://doi.org/10.1007/978-3-662-54345-0_42
https://doi.org/10.1007/978-3-662-54345-0_42
Autor:
Hauke Schramm, Martin Bergtholdt, Cristian Lorenz, Carsten Meyer, Jens von Berg, Jan Modersitzki, Alexander Oliver Mader
Publikováno v:
Graphs in Biomedical Image Analysis, Computational Anatomy and Imaging Genetics ISBN: 9783319676746
GRAIL/MFCA/MICGen@MICCAI
GRAIL/MFCA/MICGen@MICCAI
The detection and localization of single or multiple landmarks is a crucial task in medical imaging. It is often required as initialization for other tasks like segmentation or registration. A common approach to localize multiple landmarks is to expl
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6ee1bf0f962f293ece61ac2b41b41d08
https://doi.org/10.1007/978-3-319-67675-3_7
https://doi.org/10.1007/978-3-319-67675-3_7
Publikováno v:
IPTA
Many algorithms in computer vision, e.g., for object localization, are supervised and need annotated training data. One approach for object localization is the Discriminative Generalized Hough Transform (DGHT). It achieves state-of-the-art performanc