Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Alexander Katchalov"'
Autor:
Ya. Kurylev, Alexander Katchalov
Publikováno v:
Communications in Partial Differential Equations. 23:27-59
We consider an inverse boundary problem for a general second order self-adjoint elliptic differential operator on a compact differential manifold with boundary. The inverse problem is that of the reconstruction of the manifold and operator via all bu
Autor:
Alexander, Katchalov
Publikováno v:
数理解析研究所講究録. 836:12-19
Autor:
Ya V Kurylev, Alexander Katchalov
Publikováno v:
Inverse Problems. 6:L1-L6
The reflection coefficient is used to reconstruct a one-dimensional Stark-effect Hamiltonian. The main tool is the transformation operator, which reduces the inverse scattering problem to a Gelfand-Levitan-type integral equation.
Autor:
Matti Lassas, Alexander Katchalov
Publikováno v:
New Analytic and Geometric Methods in Inverse Problems ISBN: 9783642073793
University of Helsinki
University of Helsinki
In these lectures we consider inverse boundary spectral problems for elliptic operators on manifolds. This means the reconstruction of an unknown manifold and an elliptic operator on it from the knowledge of the boundary spectral data, i.e. the spect
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::896f3b773d8f4b5f60bc0fe9643760ca
https://doi.org/10.1007/978-3-662-08966-8_4
https://doi.org/10.1007/978-3-662-08966-8_4
Publikováno v:
Geometric Methods in Inverse Problems and PDE Control ISBN: 9781441923417
The goal of this paper is to consider inverse problems with different types of boundary data given as boundary forms. In particular, the boundary measurements considered in this paper are related to the measurements of energy needed to force the boun
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::d3e00264856adabeda5c2f36a2e09973
https://doi.org/10.1007/978-1-4684-9375-7_6
https://doi.org/10.1007/978-1-4684-9375-7_6
We consider inverse problems for wave, heat and Schr\"odinger-type operators and corresponding spectral problems on domains of ${\bf R}^n$ and compact manifolds. Also, we study inverse problems where coefficients of partial differential operator have
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1960b895ce4f20e87a07fc1d0ef2b1fe
http://arxiv.org/abs/math/0202225
http://arxiv.org/abs/math/0202225
Publikováno v:
Monographs & Surveys in Pure & Applied Math ISBN: 9781584880059
Inverse Boundary Spectral Problems
Inverse Boundary Spectral Problems
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::88d256659a2e79f3f8bc7a175025fcdc
https://doi.org/10.1201/9781420036220.bmatt1
https://doi.org/10.1201/9781420036220.bmatt1
Publikováno v:
Monographs & Surveys in Pure & Applied Math ISBN: 9781584880059
Inverse Boundary Spectral Problems
Inverse Boundary Spectral Problems
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::af165e7d7b48216c6242b809b0cbc6d2
https://doi.org/10.1201/9781420036220.ch2
https://doi.org/10.1201/9781420036220.ch2
Publikováno v:
Monographs & Surveys in Pure & Applied Math ISBN: 9781584880059
Inverse Boundary Spectral Problems
Inverse Boundary Spectral Problems
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::a9e74dfa6cbda78f1e531250e6c52b3e
https://doi.org/10.1201/9781420036220.ch1
https://doi.org/10.1201/9781420036220.ch1
Autor:
Alexander Katchalov, Ya. V. Kurylev
Publikováno v:
Journal of Inverse and Ill-Posed Problems. 1
The paper concerns the problem of a Riemannian manifold reconstruction using incomplete boundary spectral data of its Laplace-Beltrami operator with the Neumann boundary condition. The reconstruction procedure is based upon the boundary control metho