Zobrazeno 1 - 10
of 109
pro vyhledávání: '"Alexander J, Norquist"'
Autor:
Noor Titan Putri Hartono, Mansoor Ani Najeeb, Zhi Li, Philip W. Nega, Clare A. Fleming, Xiaohe Sun, Emory M. Chan, Antonio Abate, Alexander J. Norquist, Joshua Schrier, Tonio Buonassisi
Publikováno v:
Crystal Growth & Design. 22:5424-5431
Autor:
Mansoor Ani Najeeb Nellikkal, Rodolfo Keesey, Margaret Zeile, Venkateswaran Shekar, Zhi Li, Nicholas Leiby, Matthias Zeller, Emory M. Chan, Joshua Schrier, Alexander J. Norquist
Publikováno v:
Chemistry of Materials. 34:5386-5396
Autor:
Matthias Zeller, Zhi Li, Chaochao Dun, Wissam A. Saidi, Alexander J. Norquist, Jeffrey J. Urban, Mansoor Ani Najeeb, Joshua Schrier, Philip Nega, Emory M. Chan
Publikováno v:
Chemistry of Materials, vol 34, iss 2
Metal halide perovskite (MHP) derivatives, a promising class of optoelectronic materials, have been synthesized with a range of dimensionalities that govern their optoelectronic properties and determine their applications. We demonstrate a data-drive
Autor:
Rodolfo Keesey, Armi Tiihonen, Alexander E. Siemenn, Thomas W. Colburn, Shijing Sun, Noor Titan Putri Hartono, James Serdy, Margaret Zeile, Keqing He, Cole A. Gurtner, Austin C. Flick, Clio Batali, Alex Encinas, Richa R. Naik, Zhe Liu, Felipe Oviedo, I. Marius Peters, Janak Thapa, Siyu Isaac Parker Tian, Reinhold H. Dauskardt, Alexander J. Norquist, Tonio Buonassisi
This study is motivated by the desire to disseminate a low-cost, high-precision, high-throughput environmental chamber to test materials and devices under elevated humidity, temperature, and light. This paper documents the creation of an open-source
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3ff8efb4880a3c06c374706e9a2af112
https://doi.org/10.26434/chemrxiv-2022-wp18w-v2
https://doi.org/10.26434/chemrxiv-2022-wp18w-v2
Autor:
Venkateswaran Shekar, Vincent Yu, Benjamin J. Garcia, David Benjamin Gordon, Gemma E. Moran, David M. Blei, Loïc M. Roch, Alberto García-Durán, Mansoor Ani Najeeb, Margaret Zeile, Philip W. Nega, Zhi Li, Mina A. Kim, Emory M. Chan, Alexander J. Norquist, Sorelle Friedler, Joshua Schrier
Machine learning is a useful tool for accelerating materials discovery, however it is a challenge to develop accurate methods that successfully transfer between domains while also broadening the scope of reaction conditions considered. In this paper,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f9b7d8eb73803574e204f28241acb281
https://doi.org/10.26434/chemrxiv-2022-l1wpf-v2
https://doi.org/10.26434/chemrxiv-2022-l1wpf-v2
Autor:
Liana Alves, Mansoor Ani Najeeb, Peter Cruz Parrilla, Matthias Zeller, Zhi Li, Alexander J. Norquist, Joshua Schrier, Venkateswaran Shekar, Philip Nega, Ian M. Pendleton, Emory M. Chan, Wesley Wang, Alyssa Z. Sherman
Publikováno v:
Chemistry of Materials. 32:5650-5663
Metal halide perovskites are a promising class of materials for next-generation photovoltaic and optoelectronic devices. The discovery and full characterization of new perovskite-derived materials ...
Autor:
Michael Tynes, Alexander J. Norquist, Joshua Schrier, Zhi Li, Emory M. Chan, Mary Kathleen Caucci, Ian M. Pendleton, Mansoor Ani Najeeb Nellikkal, Aaron Dharna
Publikováno v:
The Journal of Physical Chemistry C. 124:13982-13992
Discovery of new perovskite materials is motivated by a broad range of materials applications and accelerated by recent advances in machine learning (ML). We herein report dataset augmentation, ben...
Autor:
Joshua Schrier, Jordi Cabana, Ian M. Pendleton, Gene M. Nolis, Matthew L. Nisbet, Alexander J. Norquist, Kenneth R. Poeppelmeier, Kent J. Griffith
Publikováno v:
Journal of the American Chemical Society. 142:7555-7566
Racemates have recently received attention as nonlinear optical and piezoelectric materials. Here, a machine-learning-assisted composition space approach was applied to synthesize the missing M = Ti, Zr members of the Δ,Λ-[Cu(bpy)2(H2O)]2[MF6]2·3H
Autor:
Mansoor Ani Najeeb, Sorelle A. Friedler, Vincent Yu, Emory M. Chan, Zhi Li, Alexander J. Norquist, Dylan Slack, Venkateswaran Shekar, Joshua Schrier, Philip Nega, Gareth Nicholas, Xiaorong Wang, Margaret Zeile
Autonomous experimentation systems use algorithms and data from prior experiments to select and perform new experiments in order to meet a specified objective. In most experimental chemistry situations, there is a limited set of prior historical data
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0bb496e9061d2b4c98e8d3ea86eda1d1
https://doi.org/10.26434/chemrxiv-2021-tfdmc
https://doi.org/10.26434/chemrxiv-2021-tfdmc
Autor:
Aaron E Ruby, Hao Wang, Joshua Schrier, Immaculate Lang'at, Alexander Milder, Sorelle A. Friedler, Allyson Lynch, Alexander J. Norquist, Yuheng Huang, Matthew Danielson, Xiwen Jia
Publikováno v:
Nature. 573:251-255
Most chemical experiments are planned by human scientists and therefore are subject to a variety of human cognitive biases1, heuristics2 and social influences3. These anthropogenic chemical reaction data are widely used to train machine-learning mode